K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2015

\(A=\frac{7^{11}-7}{6}\)

\(B=\frac{5^{11}-5}{4}\)

13 tháng 5 2017

Ta có \(A=\frac{7^{10}}{1+7+7^2+7^3+...+7^9}\)

Đặt \(C=1+7+7^2+7^3+....+7^9\)

Nên \(7.C=7+7^2+7^3+7^4+...+7^{10}\)

Suy ra \(7C-C=7^{10}-1\)hay \(6C=7^{10}-1\)

Khi đó \(\frac{7^{10}}{7^{10}-1}=\frac{7^{10}-1+1}{7^{10}-1}=1+\frac{1}{7^{10}-1}=\frac{A}{6}\)

Ta có \(B=\frac{5^{10}}{1+5+5^2+5^3+....+5^9}\)

Đặt \(D=1+5+5^2+5^3+....+5^9\)

Nên \(5.C=5+5^2+5^3+5^4+....+5^{10}\)

Suy ra \(5C-C=5^{10}-1\)hay \(4C=5^{10}-1\)

Khi đó \(\frac{5^{10}}{5^{10}-1}=\frac{5^{10}-1+1}{5^{10}-1}=1+\frac{1}{5^{10}-1}=\frac{B}{4}\)

Vì \(1=1;\frac{1}{5^{10}-1}>\frac{1}{7^{10}-1}\Rightarrow1+\frac{1}{5^{10}-1}>1+\frac{1}{7^{10}-1}\Rightarrow\frac{B}{4}>\frac{A}{6}\)

\(\frac{B}{4}>\frac{A}{6}\Rightarrow6B>4A\Rightarrow3B>2A\Rightarrow1,5B>A\Rightarrow B< A\)

10 tháng 4 2017

Các bạn ơi hãy giúp mình câu này với, mình cũng đang mắc

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

25 tháng 3 2019

ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)

\(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)

tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)

Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)\(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)

=> A > B 

7 tháng 3 2017

B lớn hơn A

7 tháng 3 2017

b lớn hơn

17 tháng 1 2020

a)   Ta có: 

+) \(\frac{10^8}{10^7}\)-1=  108-7-1=10-1=9 (1)

+) \(\frac{10^7}{10^6}\)-1=  107-6-1=10-1=9 (2)

Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1

Vậy..

20 tháng 8 2020

a) Đặt A = \(\frac{5^{12}+1}{5^{13}+1}\Rightarrow5A=\frac{5^{13}+5}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

Đặt \(B=\frac{5^{11}+1}{5^{12}+1}\Rightarrow5B=\frac{5^{12}+5}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

Vì \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

20 tháng 8 2020

Áp dụng công thức : \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m\in N\right)\)

Ta có : \(A=\frac{5^{12}+1}{5^{13}+1}< 1\)

\(\Leftrightarrow A=\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}=\frac{5^{12}+5}{5^{13}+5}=\frac{5\left(5^{11}+1\right)}{5\left(5^{12}+1\right)}=B\)

\(\Leftrightarrow A< B\)