K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CY
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
OI
0
DH
24 tháng 4 2020
Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))
MM
1
29 tháng 5 2018
a + b + 2a2 + 2b2 ≥ \(2ab+2a\sqrt{b}+2b\sqrt{a}\)
⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0
⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0
⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )
\(VT=a^2+b^2+1-2ab+2a-2b+b^2-2b+1\)
\(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\) (đpcm)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=0\\b=1\end{matrix}\right.\)