Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Svác - xơ.
\(F=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)
\(=\frac{a^2}{ba+ca}+\frac{b^2}{cb+db}+\frac{c^2}{dc+ac}+\frac{d^2}{ad+bd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\)(1)
Xét: \(\left(a+b+c+d\right)^2-2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
\(=a^2+b^2+c^2+d^2-2bd-2ac\)
\(=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
=> \(\left(a+b+c+d\right)^2\ge2\left(ba+ca+bd+db+dc+ac+ad+bd\right)\)
=> \(\frac{\left(a+b+c+d\right)^2}{ba+ca+bd+db+dc+ac+ad+bd}\ge2\)(2)
Từ ( 1); (2) => \(F\ge2\)
Dấu "=" xảy ra <=> a = b = c = d.
Áp dụng bất đẳng thức Cauchy- Schwartz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)
Dấu "=" xảy ra khi a = b = c = d = e
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Ta có :
\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\) (1)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)( Cộng mỗi phân số vs 1 )
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\) (2)
Với a ,b ,c ,d là các số dương , áp dụng BĐT Svacsơ , ta có :
\(\hept{\begin{cases}\frac{1}{b+c}+\frac{1}{d+a}\ge\frac{4}{a+b+c+d}\\\frac{1}{c+d}+\frac{1}{a+b}\ge\frac{4}{a+b+c+d}\end{cases}}\)
Suy ra : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\frac{4\left(a+c\right)+4\left(b+d\right)}{a+b+c+d}\)
\(\Leftrightarrow\left(2\right)\)\(\Leftrightarrow\left(1\right)\)( Điều cần CM )
\(Để\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)
Thì \(\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)
Ta có : \(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\left(a+c\right)\left(\frac{4}{a+b+c+d}\right)+\left(b+d\right)\left(\frac{4}{a+b+c+d}\right)=4\)(Áp dụng Cô-si dạng phân thức)
\(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)(Đpcm)
Học tốt ~~
Ta có : (a+b)/(a+b+c)<(a+b)/(a+b+c+d) ; (b+c)/(b+c+d)<(b+c)/(a+b+c+d) ; (c+d)/(c+d+a)>(c+d)(a+b+c+d) ; (a+d)/(a+b+d)>(a+d)(a+b+c+d)
Cộng 4 bất đẳng thức trên rồi rút gọn vế phải sẽ ra kết quả như đề bài
Trên trường tui không nghĩ ra về nhà mới phát hiên ra được
Cho mk hỏi bạn TMDuc va TNVuong thi cùng trường à. Sao lại có bài chung thế.
Theo tính chất của tỉ lệ thức , ta có :
\(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+b}< \frac{a+d}{a+b+c+d}\left(1\right)\)
Mặt khác , ta có : \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)
Tương tự , ta có : \(\hept{\begin{cases}\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\\\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\\\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\left(6\right)\end{cases}}\)
Từ ( 3 ) ; ( 4 ) ; ( 5 ) ; ( 6 )
\(\Rightarrow1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Vậy...............
P/s : Nếu sai thì bỏ qua nha !
Kimetsu bn làm mak mik thấy cứ mắc mắc chỗ nào ý,cách làm thì ko có gì phải bàn.
Ta có:
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(1\right)\)
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(2\right)\)
\(\Leftrightarrow a^2+ab+ac+ad< a^2+ad+ab+ad+ca+cd\)
\(\Leftrightarrow cd+da>0\) ( luôn đúng )
\(\left(1\right);\left(2\right)\Rightarrow\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự rồi cộng lại nha !
A=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\right)\)\(\ge4\)
B=\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}+\left(\frac{c}{b+c}+\frac{d}{c+b}+\frac{a}{d+a}+\frac{b}{a+b}\right)\)\(\ge4\)
A+B=2M+2\(\ge\)8 (M là biểu thức cần chứng minh)
M\(\ge\)2 <=>a=b=c=d
Ta có
\(\frac{a}{b+c}\ge\frac{a+a+d}{a+b+c+d}\)
\(\frac{b}{c+d}\ge\frac{b+b+a}{a+b+c+d}\)
\(\frac{c}{d+a}\ge\frac{c+c+b}{a+b+c+d}\)
\(\frac{d}{a+b}\ge\frac{d+d+c}{a+b+c+d}\)
=> \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)> \(\frac{a+a+d+b+b+a+c+c+b+d+d+c}{a+b+c+d}\)=\(\frac{2a+2b+2c+2d}{a+b+c+d}\)= 2
Chúc bạn học tốt!