Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x>=2y suy ra x-2y>=0
m=x^2/xy+y^2/xy điều kiện x,y khác 0
M=x/y+y/x
2M=2x/y+2y/x
2M=2.x/y+(-x+2y+x)/x
2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x
2m=2(x-2y)/y-(x-2y)/x+5
vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5
2M>=5
2M>5/2
vậy M=5/2
chưa chắc đã đúg đôu đúg tk mk nha
Đặt \(\frac{x}{y}=a\)
Vì \(x\ge2y>0\Rightarrow a\ge2\)
Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)
\(A=2x^2+16y^2+\frac{2}{x}+\frac{3}{y}\)
\(\frac{A}{2}=B=x^2+8y^2+\frac{1}{x}+\frac{3}{2y}=x^2+2z^2+\frac{1}{x}+\frac{3}{z}\)(x+z>=2)
\(B=\left(x-z\right)^2+\left(xz+xz+\frac{1}{z}+\frac{1}{x}\right)+\left(z^2+\frac{1}{z}+\frac{1}{z}\right)\)
\(\left(x-z\right)\ge0\) đẳng thức khi x=z
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
sorry lam lon
M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy
Do x,y > 0 nên áp dụng cô si cho 5 số dương ta có :
M ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3) (*)
Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :
M ≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2
Dau " ≥ " khi
{x^2/4xy = 4y^2/4xy
{x^3=8y^3
=>x ≥ 2y
Vậy :x ≥ 2y
\(M=\frac{x^2}{xy}+\frac{y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(x\ge2y\Rightarrow\frac{x}{y}\ge2;\frac{y}{x}\ge\frac{1}{2}\)
\(\Rightarrow M\ge2+\frac{1}{2}=\frac{5}{2}\)
\(\text{Dấu "=" xảy ra khi x=1;y=}\frac{1}{2}\)
\(\text{Vậy....}\)
Lời giải:
Ta có:
\(P=\frac{x^2+y^2}{xy}=\frac{\frac{3}{4}x^2}{xy}+\frac{\frac{x^2}{4}+y^2}{xy}\)
Áp dụng BĐT Cô-si: \(\frac{x^2}{4}+y^2\geq 2\sqrt{\frac{x^2y^2}{4}}=xy\)
\(\Rightarrow \frac{\frac{x^2}{4}+y^2}{xy}\geq \frac{xy}{xy}=1\)
Và: \(\frac{\frac{3}{4}x^2}{xy}=\frac{3x}{4y}\geq \frac{3.2y}{4y}=\frac{3}{2}\)
Do đó: \(P\geq \frac{3}{2}+1=\frac{5}{2}\Leftrightarrow P_{\min}=\frac{5}{2}\)
Dấu bằng xảy ra khi \(x=2y\)
\(x\ge2y\Rightarrow x-y\ge y\Rightarrow x\left(x-y\right)\ge2y^2\Rightarrow x^2-xy-2y^2\ge0\).
\(\left(x-2y\right)^2\ge0\Leftrightarrow x^2-4xy+4y^2\ge0\)
\(\Rightarrow\left(x^2-xy-2y^2\right)+\left(x^2-4xy+4y^2\right)\ge0\)
\(\Leftrightarrow x^2+y^2\ge\frac{5}{2}xy\)
\(A=\frac{x^2+y^2}{xy}\ge\frac{\frac{5}{2}xy}{xy}=\frac{5}{2}\)
Dấu \(=\)xảy ra khi \(x=2y>0\).
nhân M vs 4 đc \(\frac{3x^2+\left(x-2y\right)^2+4xy}{xy}=\frac{3x}{y}+\frac{\left(x-2y\right)^2}{xy}+4\)
x-2y>=0 và x>=2y => 3x/y>=6 => 4M >=10