K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 2 2018

Lời giải:

Ta có:

\(P=\frac{x^2+y^2}{xy}=\frac{\frac{3}{4}x^2}{xy}+\frac{\frac{x^2}{4}+y^2}{xy}\)

Áp dụng BĐT Cô-si: \(\frac{x^2}{4}+y^2\geq 2\sqrt{\frac{x^2y^2}{4}}=xy\)

\(\Rightarrow \frac{\frac{x^2}{4}+y^2}{xy}\geq \frac{xy}{xy}=1\)

Và: \(\frac{\frac{3}{4}x^2}{xy}=\frac{3x}{4y}\geq \frac{3.2y}{4y}=\frac{3}{2}\)

Do đó: \(P\geq \frac{3}{2}+1=\frac{5}{2}\Leftrightarrow P_{\min}=\frac{5}{2}\)

Dấu bằng xảy ra khi \(x=2y\)

22 tháng 2 2018

ta có x>=2y suy ra x-2y>=0

m=x^2/xy+y^2/xy điều kiện x,y khác 0

M=x/y+y/x

2M=2x/y+2y/x

2M=2.x/y+(-x+2y+x)/x

2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x

2m=2(x-2y)/y-(x-2y)/x+5

vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5

2M>=5

2M>5/2

vậy M=5/2

chưa chắc đã đúg đôu đúg tk mk nha

22 tháng 2 2018

Đặt \(\frac{x}{y}=a\)

Vì \(x\ge2y>0\Rightarrow a\ge2\)

Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)

8 tháng 4 2016

nhân M vs 4 đc \(\frac{3x^2+\left(x-2y\right)^2+4xy}{xy}=\frac{3x}{y}+\frac{\left(x-2y\right)^2}{xy}+4\)

x-2y>=0   và x>=2y => 3x/y>=6   => 4M >=10

17 tháng 5 2020

Vì x,y là số thực dương nên theo BĐT Cosi ta có:

\(x+y\ge2\sqrt{xy}\) Dấu "=" xảy ra <=> x=y hay x+x+x2=15 => x=y=3

GT: x+y+xy=15 => xy=15-(x+y)

Do đó: \(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-30+2\left(x+y\right)\ge\left(2\sqrt{xy}\right)^2-30+2\cdot2\sqrt{xy}\)

Dấu "=" xảy ra <=> x=y=3

Vậy \(min_P=4\cdot3^2-30+4\cdot3=18\Leftrightarrow x=y=3\)

DD
23 tháng 5 2021

\(x\ge2y\Rightarrow x-y\ge y\Rightarrow x\left(x-y\right)\ge2y^2\Rightarrow x^2-xy-2y^2\ge0\).

\(\left(x-2y\right)^2\ge0\Leftrightarrow x^2-4xy+4y^2\ge0\)

\(\Rightarrow\left(x^2-xy-2y^2\right)+\left(x^2-4xy+4y^2\right)\ge0\)

\(\Leftrightarrow x^2+y^2\ge\frac{5}{2}xy\)

\(A=\frac{x^2+y^2}{xy}\ge\frac{\frac{5}{2}xy}{xy}=\frac{5}{2}\)

Dấu \(=\)xảy ra khi \(x=2y>0\)

1 tháng 6 2015

sorry lam lon

M=(x^2+y^2/xy=x^2/xy+y^2/xy=x^2/4xy +x^2/4xy +x^2/4xy+x^2/4xy + 4y^2/4xy

Do  x,y > 0 nên áp dụng cô si cho 5 số dương ta có :

M  ≥ 5 . Căn 5 của (x^2/4xy . x^2/4xy .x^2/4xy.4y^2/4xy)=5.căn 5 của (x^3/256y^3)   (*)

Mặt khác do x ≥ 2y =>x^3 ≥ 8y^3 nên từ (*) ta có :

≥ 5.can 5 cua (8y^3/256y^3)=5.can 5 cua (1/32)=5.1/2 =5/2

Dau " ≥ " khi 

{x^2/4xy = 4y^2/4xy

{x^3=8y^3

=>x  ≥  2y

Vậy :​x  ≥ 2y

30 tháng 5 2016

\(M=\frac{x^2}{xy}+\frac{y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)

\(x\ge2y\Rightarrow\frac{x}{y}\ge2;\frac{y}{x}\ge\frac{1}{2}\)

\(\Rightarrow M\ge2+\frac{1}{2}=\frac{5}{2}\)

\(\text{Dấu "=" xảy ra khi x=1;y=}\frac{1}{2}\)

\(\text{Vậy....}\)

19 tháng 1 2017

\(A=2x^2+16y^2+\frac{2}{x}+\frac{3}{y}\)

\(\frac{A}{2}=B=x^2+8y^2+\frac{1}{x}+\frac{3}{2y}=x^2+2z^2+\frac{1}{x}+\frac{3}{z}\)(x+z>=2)

\(B=\left(x-z\right)^2+\left(xz+xz+\frac{1}{z}+\frac{1}{x}\right)+\left(z^2+\frac{1}{z}+\frac{1}{z}\right)\)

\(\left(x-z\right)\ge0\) đẳng thức khi x=z

2 tháng 11 2018

HD (thầy Minh): Ta có: