\(\sqrt{\frac{2}{2x+4}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)

Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)

Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)

Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)

Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:

\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)

Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:

\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:
a)

\(\left\{\begin{matrix} x\geq 0\\ 3-\sqrt{x}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\leq 9\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

b)

\(\left\{\begin{matrix} x-1\geq 0\\ 2-\sqrt{x-1}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x-1\leq 4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 5\end{matrix}\right.\)

\(\Leftrightarrow 1\leq x\leq 5\)

c)

\(-7+3x>0\Leftrightarrow x>\frac{7}{3}\)

d)

\(\left\{\begin{matrix} x-1\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x< 5\end{matrix}\right.\Leftrightarrow 1\leq x< 5\)

e) \(x\in\mathbb{R}\)

f) \(\left\{\begin{matrix} 2-x>0\\ x-5\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 2\\ x\geq 5\end{matrix}\right.\) (vô lý)

Do đó không tồn tại $x$ để hàm số tồn tại

g)

\(\left[\begin{matrix} \left\{\begin{matrix} 3x-6-2x\geq 0\\ 1-x>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-6-2x\leq 0\\ 1-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq 6\\ x< 1\end{matrix}\right.(\text{vô lý})\\ \left\{\begin{matrix} x\leq 6\\ x>1 \end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow 1< x\leq 6\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

h)

ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)

k)

ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)

m)

ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$

b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)

c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$

d) ĐK:

\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)

e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$

f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)

20 tháng 7 2019

a) ĐK: \(\left\{{}\begin{matrix}x\ne-1\\\frac{4-x}{x+1}\ge0\end{matrix}\right.\). Lập bảng xét dấu sẽ được \(-1< x\le4\)

b) Tương tự

c)(em ko chắc) ĐK: \(\left\{{}\begin{matrix}x^2-4\ge0\left(1\right)\\\frac{x-2}{x+1}\ge0\left(2\right)\\x\ne-1\end{matrix}\right.\). Giải (1) ta được \(x\le-2\text{hoặc }x\ge2\)

Giải (2) được \(x\le-1\text{ hoặc }x\ge2\)

Kết hợp lại ta được: \(x\le-2\text{hoặc }x\ge2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:

a) ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$

b) ĐKXĐ: $3+2x>0\Leftrightarrow x>\frac{-3}{2}$

c) ĐKXĐ: $x^2-4\geq 0\Leftrightarrow (x-2)(x+2)\geq 0$

$\Leftrightarrow x\geq 2$ hoặc $x\leq -2$

d)

ĐKXĐ\(\left\{\begin{matrix} x\geq 0\\ \sqrt{x}\neq 2\\ x+1>0\\ x\neq 0\\ \sqrt{x}\neq 3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>0\\ x\neq 4\\ x\neq 9\end{matrix}\right.\)

e)

ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ 7-\sqrt{x}>0\end{matrix}\right.\Leftrightarrow 0\leq x< 49\)

f)

\(\left\{\begin{matrix} 5-x\neq 0\\ \frac{x+3}{5-x}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x+3\geq 0\\ 5-x>0\end{matrix}\right.\\ \left\{\begin{matrix} x+3\leq 0\\ 5-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow -3\leq x< 5\)

20 tháng 3 2020

a) \(x\le\frac{3}{2}\)

b) x \(\ne\)0

c) x>-3

d)vô nghiệm

e) x\(\ge\)\(\frac{-4}{3}\)

f) x\(\in\)R

g) x<\(\frac{1}{2}\)

h)x<\(\frac{-5}{3}\)

20 tháng 3 2020

a,\(\sqrt{-2x+3}\) xác định khi b.\(\sqrt{\frac{2}{x^2}}\) xác định khi

\(-2x+3\ge0\) \(\frac{2}{x^2}\ge0\)

\(\Leftrightarrow-2x\ge-3\) \(\Rightarrow x^2>0\) (vì 2>0) (lđ)

\(\Leftrightarrow x\le\frac{3}{2}\) Vậy\(\sqrt{\frac{2}{x^2}}\) xác định với mọi x Vậy...

c,\(\sqrt{\frac{4}{x+3}}\) xác định khi d,\(\sqrt{\frac{-5}{x^2+6}}\) xác định khi

\(\frac{4}{x+3}\ge0\) \(\frac{-5}{x^2+6}\ge0\)

\(\Rightarrow x+3>0\)(vì 4>0) \(\Rightarrow x^2+6< 0\) (vì -5<0)

\(\Leftrightarrow x>-3\) \(\Leftrightarrow x^2< -6\) (vl)

Vậy... Vậy không có giá trị nào để

căn thức xác định

f,\(\sqrt{1+x^2}\) xác định khi\(1+x^2\ge0\)

\(\Leftrightarrow x^2\ge-1\) (lđ)

5 tháng 7 2017

tìm x để bt xác định

                               

                                            cho mỗi biểu thức trong căn  

                                                                         

                                                                                                  lớn hơn hoặc =0

                                                    

                                           

NV
23 tháng 2 2020

ĐKXĐ:

1/ \(-2x+3\ge0\Leftrightarrow x\le\frac{3}{2}\)

2/ \(x^2\ne0\Rightarrow x\ne0\)

3/ \(x+3>0\Rightarrow x>-3\)

4/ Không tồn tại x để biểu thức xác định

5/ \(3x+4\ge0\Rightarrow x\ge-\frac{4}{3}\)

6/ Biểu thức xác định với mọi x

7/ \(1-2x>0\Rightarrow x< \frac{1}{2}\)

8/ \(3x+5< 0\Rightarrow x< -\frac{5}{3}\)