Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x+5}{2+x}=\frac{3x+6-1}{x+2}=\frac{3\left(x+2\right)-1}{x+2}=3-\frac{1}{x+2}\)
Để \(3-\frac{1}{x+2}\) là số nguyên <=> \(\frac{1}{x+2}\) là số nguyên
=> x + 2 thuộc ước của 1 là - 1; 1
Ta có : x + 2 = - 1 => x = - 1 - 2 = - 3 (TM)
x + 2 = 1 => x = 1 - 2 = - 1 (TM)
Vậy x = { - 3; - 1 }
A=\(\frac{3x+5}{x+2}=\frac{3x+6-1}{x+2}=\frac{3\left(x+2\right)}{x+2}-\frac{1}{x+2}\)
=> A=\(3-\frac{1}{x+2}\)
Để A nguyên thì 1 phải chia hết cho (x+2) => x+2=-1 và x+2 =1
=> x={-3; -1}
+/ x=-3 => A=\(3-\frac{1}{-3+2}=3+1=4\)
+/ x=-1 => A=\(3-\frac{1}{-1+2}=3-1=2\)
Ta có:
\(\frac{3x+5}{x+2}\)đạt giá trị nguyên
\(\Rightarrow\)3x+5 \(⋮\)x+2
\(\Rightarrow\) 3(x+2) -1 \(⋮\)x+2
\(\Rightarrow\)1 \(⋮\) x+2
\(\Rightarrow\)x+2= -1\(\Rightarrow\)x=-3
x+2= 1 \(\Rightarrow\)x=-1
Vậy x= -3;-1
Chúc bạn làm bài tốt
Ta có :
\(A=\frac{3x+5}{2+x}=\frac{3x+6-1}{2+x}=\frac{3.\left(x+2\right)-1}{2+x}=3-\frac{1}{2+x}\)
để S có giá trị nguyên thì \(\frac{1}{2+x}\in Z\)
\(\Rightarrow\)2 + x \(\in\)Ư ( 1 ) = { 1 ; -1 }
\(\Rightarrow\)x = -1 ; x = -3
khi đó : S = { -1 ; -3 }
\(\frac{3x+5}{x+2}=\frac{3\left(x+2\right)-1}{x+2}=3-\frac{1}{x+2}\in Z\)
=> \(x+2\inƯ\left(1\right)=\left\{1;-1\right\}\)
=> \(x=\left\{-1;-3\right\}\)
Vậy.......
Để \(\frac{3x+5}{x+2}\)có giá trị nguyên thì : \(3x+5⋮x+2\)
=> (3x + 5) - 3.(x + 2) \(⋮\)x + 2
=> 3x + 5 - 3x - 6 \(⋮\)x + 2
=> - 1 \(⋮\)x + 2
=> x + 2 là Ư(1)
Mà 1 có 2 Ư là 1 và -1
=> x + 2 \(\in\){1 ;-1}
=> x \(\in\){-1 ;- 3}
\(D=\left|2x+2,5\right|+\left|2x-3\right|=\left|2x+2,5\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) với \(xy\ge0\)
=>\(D=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=\left|5,5\right|=5,5\)
với \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
=>Dmin=5,5 khi \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
Lập bảng xét dấu:
x | -1,25 1,5 |
2x+2,5 | - 0 + | + |
3-2x | + | + 0 - |
(2x+2,5)(3-2x) | - 0 + 0 - |
Dễ thấy \(-1,25\le x< 1,5\) thỏa mãn \(\left(2x+2,5\right)\left(3-2x\right)\ge0\)
x nguyên => \(x\in\left\{-1;0;1\right\}\)
Vậy Dmin=5,5 khi \(x\in\left\{-1;0;1\right\}\)
Có: \(\hept{\begin{cases}\left|2x+2,5\right|\ge2x+2,5\\\left|2x-3\right|\ge3-2x\end{cases}}\) với mọi x
=> \(D=\left|2x+2,5\right|+\left|2x-3\right|\ge\left(2x+2,5\right)+\left(3-2x\right)\)
hay \(D\ge5,5\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x+2,5\ge0\\2x-3\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2x\ge-2,5\\2x\le3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge\frac{-5}{4}\\x\le\frac{3}{2}\end{cases}}\)\(\Rightarrow\frac{-5}{4}\le x\le\frac{3}{2}\)
Mà x nguyên => \(x\in\left\{-1;1;0\right\}\)
Vậy...
\(Ta..có:A=\frac{3x+5}{2+x}.nguyên.\)
\(\Rightarrow3x+5⋮2+x.\)
\(Mà:3\left(2+x\right)=3x+6⋮2+x.\)
\(\Rightarrow3x+6-3x-5⋮2+x.\)
\(\Rightarrow1⋮2+x\)
\(\Rightarrow2+x\inƯ\left(1\right).\)
\(\Rightarrow2+x\in\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{-1;-3\right\}\)
Chuẩn đấy