Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a; 17 - 11 - (-39)
= 17 - 11 + 39
= 6 + 39
= 45
b; 125 - 4[ 3 -7 .(-2)]
= 125 - 4.[3 + 14]
= 125 - 4.17
= 125 - 68
= 57
bài1:a
-3 + 12
= 12 - 3
= 9
b)(-24) : 8 = -3
c)-9 - 13
= -9 + (-13)
=-(9 + 13)
= -22
Bài 1:
a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc
d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\frac{6}{13}\)
\(=\frac{8}{13}\)
Bài 2:
a) b) c)
d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)
\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)
Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)
Bài 1 :
a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-27}{44}+\frac{1}{8}\)
\(=\frac{-43}{88}\)
\(a)2\left(4x-8\right)-7\left(3+x\right)=|-4|\left(3-2\right)\)
\(\Leftrightarrow8x-16-21-7x=4\)
\(\Leftrightarrow\left(8x-7x\right)=16+21+4\)
\(\Leftrightarrow x=41\)
\(b)3|x-3|=15-|-9|+7|-3|-\left(-21\right)\)
\(\Leftrightarrow3|x-3|=15-9+7.3+21\)
\(\Leftrightarrow3|x-3|=15-9+21+21\)
\(\Leftrightarrow3|x-3|=48\)
\(\Leftrightarrow|x-3|=16\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=-16\\x-3=16\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\\x=19\end{cases}}\)
\(c)4\left(x-5\right)-7\left(5-x\right)+10\left(5-x\right)=-3\)
\(\Leftrightarrow4x-20-35+7x+50-10x=-3\)
\(\Leftrightarrow4x+7x-10x=20+35-50-3\)
\(\Leftrightarrow x=2\)
\(d)6|x-3|-9|x-3|=-21\)
\(\Leftrightarrow|x-3|\left(6-9\right)=-21\)
\(\Leftrightarrow-3|x-3|=-21\)
\(\Leftrightarrow|x-3|=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=-7\\x-3=7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=10\end{cases}}\)
Bài 1
a) \(\frac{5}{6}=\frac{x-1}{x}\)
<=> 5x=6x-6
<=> 5x-6x=-6
<=> -11x=-6
<=> \(x=\frac{6}{11}\)
b)c)d) nhân chéo làm tương tự
c: =>2/3x=1/10+1/2=1/10+5/10=6/10=3/5
hay \(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
d: \(\Leftrightarrow\dfrac{4}{9}:x=\dfrac{2}{3}-\dfrac{3}{5}=\dfrac{1}{15}\)
hay \(x=\dfrac{4}{9}:\dfrac{1}{15}=\dfrac{4}{9}\cdot15=\dfrac{20}{3}\)
f: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)
\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)
\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)
\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)
\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)
\(\Rightarrow x=-\frac{25}{32}\)
\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)
\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)
\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)
\(\Rightarrow x=10\)
\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)
\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)
\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)
\(\Rightarrow|x|=\frac{33}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)
\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)
Tìm x, biết:
a) \(5,2x+7\frac{2}{5}=6\frac{3}{4}\)
b) \(2,4:\left(\frac{-1}{2}-x\right)=1\frac{3}{5}\)
a) \(5,2x+7\frac{2}{5}=6\frac{3}{4}\) b) \(2,4:\left(\frac{-1}{2}-x\right)=1\frac{3}{5}\)
\(5,2x+\frac{37}{5}=\frac{27}{4}\) \(2,4:\left(\frac{-1}{2}-x\right)=\frac{8}{5}\)
\(5,2x\) = \(\frac{27}{4}-\frac{37}{5}\) \(\frac{-1}{2}-x\)= \(2,4:\frac{8}{5}\)
\(5,2x\) = \(\frac{-13}{20}\) \(\frac{-1}{2}-x\)= \(\frac{3}{2}\)
x = \(\frac{-13}{20}:5,2\) x = \(\frac{-1}{2}-\frac{3}{2}\)
x = -0,125 x = \(\frac{-4}{2}\)= -2
Đáp án là C