Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(\frac{1}{2}+x\right)^2=\left(\frac{1}{2}\right)^2+2.\frac{1}{2}.x+x^2=\frac{1}{4}+x+x^2\)
\(\left(2x+1\right)^2=\left(2x\right)^2+2.2x.1+1^2=4x^2+4x+1\)
b, \(\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2=4x^2+12xy+9y^2\)
\(\left(0,01+xy\right)^2=\frac{1}{10000}+\frac{1}{50}xy+x^2y^2\)
c, \(\left(x+1\right)\left(x-1\right)=x^2-1\)
d, \(\left(x-2y\right)\left(x-2y\right)=\left(x-2y\right)^2=x^2-4xy+4y^2\)
\(56.64=\left(60-4\right)\left(60+4\right)=60^2-4^2\)
Ta có : x2 + 3x
= x2 + \(2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
\(=\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left[\left(2x+3y\right)+1\right]^2=\left(2x+3y+1\right)^2.\)
A)\(1-2x+x^2\)
\(=\left(1-x\right)^2\)
B)\(4y+4+y^2\)
\(=2^2+4y+y^2\)
\(=\left(2+y\right)^2\)
C)\(\frac{1}{16}+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}\right)^2+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}+x\right)\)
D)\(36x^2+12xy+y^2\)
\(=\left(6x+y\right)^2\)
a, 1-2x+x^2 = x^2 - 2x.1 + 1^2= (x-1)^2
b, 4y+4+y^2 = y^2 + 2y.2+ 2^2 = (y+2)^2
c, 1/16+1/2x+x^2 = x^2 + 2.x.\(\frac{1}{4}\)+ (1/4)^2 = (x+1/4)^2
d, 36x^2+12xy+y^2 = (6x)^2 + 2.6x.y + y^2 = (6x+y)^2
a) \(1-2x+x^2=\left(1-x\right)^2=\left(x-1\right)^2\)
b) \(4y+4+y^2=y^2+4y+4=\left(y+2\right)^2\)
c) \(\frac{1}{16}+\frac{1}{2}x+x^2=\left(x+\frac{1}{4}\right)^2\)
d) \(36x^2+12xy+y^2=\left(6x+y\right)^2\)