Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(4^3.2^4\div\left(4^2.\frac{1}{32}\right)\)
\(=\left(2^2\right)^3.2^4\div\left(2^2\right)^2\div32\).
\(=2^{\left(2.3\right)}.2^4\div2^{\left(2.2\right)}\div2^5\)
\(=2^6.2^4\div2^4\div2^5\)
\(=2^{6+4-4-5}=2^1\)
b)\(\left(\frac{1}{5}\right)^5=\frac{1}{5^5}=\left|5^5\right|=5^{-5}\)
\(\frac{1}{125}=\frac{1}{5^3}=\left|5^3\right|=5^{-3}\)
c)\(\frac{4}{25}=\frac{2^2}{5^2}=\left(\frac{2}{5}\right)^2=0,4^2\)
\(\frac{-8}{125}=\frac{-2^3}{5^3}=\left(\frac{-2}{5}\right)^2=-0,4^3=0,4^{-3}\)
\(\frac{16}{625}=\frac{2^4}{5^4}=\left(\frac{2}{5}\right)^4=0,4^4\)
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
\(A=3+3^2+...+3^{50}\)
\(\Rightarrow3A=3^2+3^3+...+3^{50}+3^{51}\)
\(\Rightarrow3A-A=3^{51}-3\)
\(\Rightarrow2A=3^{51}-3\)
\(\Rightarrow A=\frac{3^{51}-3}{2}\)
\(B=2-2^2+2^3-2^4+...+2^{2019}-2^{2020}\)
\(2B=2^2-2^3+2^4-2^5+...+2^{2020}-2^{2021}\)
\(B+2B=2-2^{2021}\)
\(3B=2-2^{2021}\)
\(B=\frac{2-2^{2021}}{3}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2008.2009}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(C=1-\frac{1}{2009}\)
\(C=\frac{2008}{2009}\)
\(D=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(D=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
\(D=\frac{1}{2}\left(1-\frac{1}{11}\right)\)
\(D=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Bài 1:
a: \(2^2\cdot8^4\cdot16^2=2^2\cdot2^{12}\cdot2^8=2^{22}\)
b: \(3^3\cdot27\cdot81=3^3\cdot3^3\cdot3^4=3^{10}\)
c: \(5^2\cdot125\cdot25^2=5^2\cdot5^4\cdot5^3=5^9\)