Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
b: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
hay AB=AD
c: Xét tứ giác ABED có
H là trung điểm của AE
H là trung điểm của BD
Do đó: ABED là hình bình hành
Suy ra: AB//ED
hay ED\(\perp\)AC
Lớp 7 thôi, đừng cao quá!.
a) \(AC=AE;AB=AD\)
\(\Rightarrow\Delta_VABC\sim\Delta_vADE\left(2cgv\right)\)
b)\(AC=AE\Rightarrow\Delta ACE\) vuông cân tại A.
\(\Rightarrow\widehat{AEC}=\widehat{ACE}=45^o\)
:v thx ạ do đây là lần đâu t hỏi trên đây nên k bt đăng luôn..
MH =\(\sqrt{2}a\) => MC = \(2\sqrt{2}a\) và CH = \(\sqrt{6}a\)
=> BC = 2CH = \(2\sqrt{6}a\)
=> AC = BC = \(2\sqrt{6}a\)
Tam giác DBC vuông cân tại D => DH = HB = HC = \(\sqrt{6}a\) => DC = \(\sqrt{12}a\)
Tam giác MDC vuông tại M => MD2 = DC2 - MC2 = 12a2 - 8a2 = 4a2 => MD = 2a
Tam giác MAC vuông tại M => MA2 = AC2 - MC2 = 24a2 - 8a2 = 16a2 => MA = 4a
Trong mặt phẳng BCD, điểm H cách đều B, C, D => Hình cầu ngoại tiếp ABCD nằm trên đường thẳng đi qua H và vuông góc với mặt phẳng BCD. Đường thẳng này nằm trong mặt phẳng HDA (Vì đường thẳng đó vuông góc với BC nên sẽ nằm trên mặt phẳng HDA).
Đồng thời tâm hình cầu cách đều A và D => Tâm đó nằm trên đường trung trực của AD trong mặt phẳng HDA.
Ta vẽ riêng tam giác HDA ra, kẻ đường HE vuông góc với HD cắt AD tại E. Ta có HM là đường cao tam giác vuông HED nên:
HD2 = MD.DE => 6a2 = 2a. DE => DE = 3a.
Mà AD = MD + DA = 2a + 4a = 6a => AE = AD - DE = 6a -3a = 3a => Điểm E là điểm giữa của A và D.
Vậy E chính là tâm hình cầu ngoại tiếp tứ diện ABCD, bán kính hình cầu là ED = 3a => Thể tích khối cầu ....
A B C H D E K I
a/
Ta có
\(AB\perp AC\Rightarrow AD\perp AC;HE\perp AC\) => AD//HE
\(AC\perp AB\Rightarrow AE\perp AB,HD\perp AB\) => AE//HD
=> ADHE là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Mà \(\widehat{A}=90^o\)
=> ADHE là hình CN
b/
Xét tg vuông ADH có
\(DH=\sqrt{AH^2-AD^2}\) (Pitago)
\(\Rightarrow DH=\sqrt{5^2-4^2}=3cm\)
\(\Rightarrow S_{ADHE}=AD.DH=4.3=12cm^2\)
c/
Ta có
DB=DI (gt); DH=DK (gt) => BKIH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
Xét tg AKH có
\(HD\perp AB\Rightarrow AD\perp HK\) (1)
BKIH là hình bình hành (cmt) => KI//BH (cạn đối hbh)
Mà \(AH\perp BC\left(gt\right)\Rightarrow BH\perp AH\)
\(\Rightarrow KI\perp AH\) (2)
Từ (1) và (2) => I là trực tâm của tg AKH => \(AK\perp HI\) (trong tg 3 đường cao đồng quy)