K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

a) B = | 2x - 3 | - 7

| 2x - 3 | ≥ 0 ∀ x => | 2x - 3 | - 7 ≥ -7

Đẳng thức xảy ra <=> 2x - 3 = 0 => x = 3/2

=> MinB = -7 <=> x = 3/2

C = | x - 1 | + | x - 3 |

= | x - 1 | + | -( x - 3 ) | 

= | x - 1 | + | 3 - x | ≥ | x - 1 + 3 - x | = | 2 | = 2

Đẳng thức xảy ra khi ab ≥ 0

=> ( x - 1 )( 3 - x ) ≥ 0

=> 1 ≤ x ≤ 3

=> MinC = 2 <=> 1 ≤ x ≤ 3

b) M = 5 - | x - 1 |

- | x - 1 | ≤ 0 ∀ x => 5 - | x - 1 | ≤ 5

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MaxM = 5 <=> x = 1

N = 7 - | 2x - 1 |

- | 2x - 1 | ≤ 0 ∀ x => 7 - | 2x - 1 | ≤ 7 

Đẳng thức xảy ra <=> 2x - 1 = 0 => x = 1/2

=> MaxN = 7 <=> x = 1/2

16 tháng 7 2019

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:

a. x2 - 2xy + 2y2 + 2y +1

= (x2 - 2xy + y2) +( y + 2y +1)

= (x-y)2 + (y+1)2

b. 4x- 12x - y+ 2y + 8

= (4x2 - 12x + 9 ) - (y2 - 2y  +1 )

= (2x-3)2 - (y-1)2

5 tháng 2 2020

a)

- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3

=> A lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0

                                             => x + 3 = 0

                                                         x = -3

Vậy..........

b)

Ta có: B lớn hơn hoặc = / x - 1 /  + / x - 3 / = / x - 1 /  + / 3 - x /

Mà / x - 1 /  + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x /  = /2/ = 2

=> B lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0.   (1)

Giải (1) được x = 2 TM.

Vậy min B = 2 <=> x=2.

=4.2 hoặc 6

28 tháng 1 2016

?????????????????????????????????????????????????????????????

11 tháng 7 2019

Trong tập chứa x

Ta thấy: \(-\frac{3}{20}>-\frac{1}{2}>-\frac{1}{4}>-\frac{7}{10}\)

Trong tập chứa y

Ta thấy: \(\frac{11}{21}< \frac{4}{7}< \frac{2}{3}\)

a) Giá trị lớn nhất của x+y khi x lớn nhất  và y lớn nhất

\(\frac{2}{3}+\left(-\frac{3}{20}\right)=\frac{31}{60}\)

b) Giá trị bé nhất của x+y khi x bé nhất và y bé nhất

\(\frac{11}{21}+\left(-\frac{7}{10}\right)=-\frac{3}{20}\)

19 tháng 3 2020

xét k=100

dễ dàng tìm được tập số có n số mà trong đó  ko có số nào là bội của số kia \(\left\{101,102,...,200\right\}\)

ta chứng minh k=101 thì bài toán đúng

ta lấy ngẫu nhiên 101 số từ  tập 200 số đã cho

\(\left\{a_1,a_2,...,a_{101}\right\}\)

ta biểu diễn 101 số này thành dạng

\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2\)

.....

\(a_{101}=2^{x_{101}}.b_{101}\)

zới \(x_1,x_2,...,x_{101}\)là các số tự nhiên . \(b_1,b_2,...,b_{101}\)là các số lẻ zà \(1\le b_1,b_2,...,b_{101}\) 

ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ , zì thế trong 101 số đã chọn tồn tại\(m>n\)sao cho \(b_m=b_n\). hai số này là bội của nhau

zậy k nhỏ nhất là 101 thì thỏa mãn yêu cầu đề bài

19 tháng 3 2020

cảm ơn nha

21 tháng 11 2018

Ta có: \(\frac{6\frac{1}{4}}{x}=\frac{x}{1,96}\)

\(\left(=\right)\frac{\frac{25}{4}}{x}=\frac{x}{1,96}\)

\(\left(=\right)x^2=12,25\)

\(=>\orbr{\begin{cases}x=3,5\\x=-3,5\end{cases}}\)

học tốt

21 tháng 11 2018

Thanks!!!!!!!!!!!!

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 1 / 1 / 2018Ngày nộp : 18 / 1 / 2019Ngày trao thưởng : 23/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì  : 8 SPBa  : 6 SPKhuyến khích  : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi:    +Mỗi lần đăng lên...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 1 / 1 / 2018

Ngày nộp : 18 / 1 / 2019

Ngày trao thưởng : 23/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì  : 8 SP

Ba  : 6 SP

Khuyến khích  : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

     + Ai không đáp ứng đủ thể lệ sẽ bị loại

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Tìm các số nguyên n sao cho biểu thức sau là số nguyên: \(P=\frac{2n-1}{n-1}\)

Câu 2 : Bạn An mang một số tiền đến nhà sách để mua tập và bút. Số tiền bạn An mang theo vừa đủ để mua 3 cuốn tập hoặc 6 cây bút đỏ hoặc 10 cây bút xanh. Biết rằng giá của một cây bút đỏ cao hơn so với giá một cây bút xanh là 2000 đồng. Hỏi giá của mỗi cuốn tập, mỗi cây bút đỏ, mỗi cây bút xanh là bao nhiêu tiền?

Câu 3 : 

Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC.

9

Câu 1 :

\(P=\frac{2n-1}{n-1}\)

Để \(P\inℤ\)Cần \(2n-1⋮n-1\Rightarrow2n-2+1⋮n-1\)\(\Rightarrow2\left(n-1\right)+1⋮n-1\)

Mà \(2\left(n-1\right)⋮n-1\)\(\Rightarrow P\inℤ\Leftrightarrow1⋮n-1\)

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow n=\left\{0;2\right\}\)

Vậy \(n=0;n=2\)thì \(P\inℤ\)