K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

Bạn clink chuột vào đây có bài này tớ làm rồi  Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

25 tháng 7 2015

Cảm ơn Đinh Tuấn Việt nhiều!!!!!!!!!!

2 tháng 1 2016

Sao các tich bằng nhau vậy, vô lý!

6 tháng 1 2024

Ta có abc = 3. (a+b+c) 

⇒abc chia hết cho 3

 

Giả sử a chia hết cho 3. Do a là số nguyên tố 

⇒ a=3

 

3bc=3(3+b+c) 

⇒ bc=3+b+c

 

bc-b = 3+c 

⇒ b(c-1) = 4+(c-1) 

⇒ (b-1)(c-1) = 4

 

⇒ (b,c) 

∈ {(3,3);(2,5)}

 

Vậy (a,b,c

∈ {(3,3,3) ; (2,3,5)}

22 tháng 7 2015

Ta có abc = 3. (a+b+c) \(\Rightarrow\)abc chia hết cho 3

Giả sử a chia hết cho 3. Do a là số nguyên tố \(\Rightarrow\) a=3

3bc=3(3+b+c) \(\Rightarrow\) bc=3+b+c

bc-b = 3+c \(\Rightarrow\) b(c-1) = 4+(c-1) \(\Rightarrow\) (b-1)(c-1) = 4

\(\Rightarrow\) (b,c) \(\in\) {(3,3);(2,5)}

Vậy (a,b,c) \(\in\) {(3,3,3) ; (2,3,5)}

15 tháng 10 2023

3;3;3/2;3;5

 

17 tháng 5 2015

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)

    Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.

17 tháng 5 2015

Ta có:

abc + a = -625 (1)

abc + b = -633 (2) 

abc + c = -597 93)

Từ (1), (2) và (3) => a,b và c lẻ => abc lẻ => abc + a chẵn (vì lẻ + lẻ = chẵn) mâu thuẫn với -625 là số lẻ

Vậy không tồn tại số nguyên a, b, c thỏa mãn

26 tháng 7 2015

Ta có : ab – ac + bc – c2 = - 1 
(ab – ac) + (bc – c2) = - 1 
a(b – c)+ c(b – c) = -1 
(b – c)(a + c) = -1

Vì a, b, c nguyên nên: a + c = 1 ; b - c = 1 hoặc a + c = -1 ; b - c = 1

=> a + b = 0 hay a và b là 2 số nguyên đối nhau (đpcm)