Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H E
a, xét ΔABD và ΔABH có : AB chung
AH = AD (gt)
^DAB = ^ABH = 90
=> ΔABD = ΔABH (2cgv)
=> BD = BH (định nghĩa)
=> ΔBDH cân tại B (định nghĩa)
b. D là trung điểm của AC (gt) => AD = AC/2 (tính chất)
AB = AC/2
=> AD = AB = AC/2
AD = 5 cm (gt)
=> AB = 5 và AC = 10
ΔABC vuông tại A (gt) => AB^2 + AC^2 = BC^2 (Pytago)
=> BC^2 = 125
=> BC = \(\sqrt{125}\) do BC > 0
c, có AD = AC/2 (câu b)
AD = AH (Gt)
=> AD + AH = 2.AC/2
=> AD = AC (1)
có E thuộc đường tròn tâm D bán kính BC (gt)
=> DE = BC
xét ΔEADvà ΔBAC có : ^EAD = ^CAB = 90 và (1)
=> ΔEAD = ΔBAC (ch-cgv)
=> HE = AB mà AB = AD (câu b)
=> HE = AD
d,
a, Xét \(\Delta ABH\)và \(\Delta ABD\)có :
\(AH=AD\left(gt\right)\)
\(\widehat{BAH}=\widehat{BAD}=90^o\)( vì \(\Delta ABC\)vuông tại A )
\(BA\)chung
Vậy \(\Delta ABH=\Delta ABD\left(c.g.c\right)\)
\(\Rightarrow BH=BD\)( hai cạnh tương ứng )
\(\Rightarrow\Delta DBH\)cân tại B
b,Ta có:
AC = 2AB ( gt )
2AD = 2CD = AC ( vì D là trung điểm của AC )
Suy ra AB = AD = CD = 2 cm.
Lại có :
2AD = CD hay 2 x 2 = AC
nên AC = 4 cm
Xét \(\Delta ABC\)có :
\(BC^2=AB^2+AC^2\)
hay \(BC^2=2^2+4^2\)
\(BC^2=4+16\)
\(BC^2=20\Rightarrow BC=\sqrt{20}\)( cm )
Vậy \(BC=\sqrt{20}cm\)
Mình làm đến đây thôi
a) Xét ΔABD vuông tại A và ΔABH vuông tại A có
DA=AH(gt)
AB là cạnh chung
Do đó: ΔABD=ΔABH(hai cạnh góc vuông)
⇒BD=BH(hai cạnh tương ứng)
Xét ΔDBH có BD=BH(cmt)
nên ΔDBH cân tại B(định nghĩa tam giác cân)
b) Ta có: AC=2AD(D là trung điểm của AC)
hay AC=2*5=10cm
Ta có: AC=2AB(gt)
hay \(AB=\frac{10}{2}=5cm\)
Áp dụng định lí pytago vào ΔABC vuông tại A, ta được
\(BC^2=AB^2+AC^2\)
hay \(BC^2=5^2+10^2=125\)
⇒\(BC=\sqrt{125}=5\sqrt{5}cm\)
Vậy: \(BC=5\sqrt{5}cm\)
Dùng hình của bạn Mai nhé.
Kẽ DP và EQ \(⊥\)HK tại P và Q.
Xét \(\Delta DPA\)và \(\Delta AHB\)có
\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)
\(\Rightarrow\Delta DPA=\Delta AHB\)
\(\Rightarrow DP=AH\left(1\right)\)
Xét \(\Delta EQA\)và \(\Delta AHC\)có
\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)
\(\Rightarrow\Delta EQA=\Delta AHC\)
\(\Rightarrow EQ=AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DP=EQ\)
Xét \(\Delta DPK\)và \(\Delta EQK\)có
\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)
\(\Rightarrow\Delta DPK=\Delta EQK\)
\(\Rightarrow DK=EK\)
Vậy K là trung điểm của DE
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
x y E D A B C 1 2 3 F 1 2
GT :Ax vuông góc AC ; Ay vuông góc AB ; AD=AC ; AE=AB ; AH vuông góc DC
KL:C/m BD=EC ; C/m BD vuông góc EC ; ME=MD
a/
Ax vuông góc AC
=> Â1=900
Ay vuông góc với AB
=>Â2=900
=>Â1=Â2
mà góc EAC=Â2+Â3
góc DAB=Â1+Â3
=> góc EAC= góc DAB
Xét \(\Delta\)EAC và \(\Delta\)DAB có :
AD=AC(gt)
AE=AB(gt)
góc EAC= góc DAB (cmt)
=> \(\Delta\)EAC = \(\Delta\)DAB
=> DB=EC ( hai cạnh tương ứng )
b đang nghĩ
c xem lại đề /