Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
B1. 2x + 3 + 22 = 72
=> 2x + 3 + 4 = 72
=> 2x + 3 = 72 - 4
=> 2x + 3 = 68
=> ko có gtri x
B2 : Ta có : A = 1 + 2 + 22 + 23 + 24 + 25 + 26 + ... + 22001 + 22002
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ... + (22000 + 22001 + 22002)
= 3 + 22.(1 + 2 + 22) + 25.(1 + 2 + 22 ) + ... + 22000 . (1 + 2 + 22)
= 3 + 22.7 + 25.7 + ... + 22000 . 7
= 3 + (22 + 25 + .... + 22000) . 7
=> Số dư của 7 là 3
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
\(A=2+2^2+2^3+2^4+2^5+...+2^{60}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{59}+2^{60})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^{59}(1+2)\)
\(=2.3+2^3.3+2^5.3+...+2^{59}.3\)
\(=(2+2^3+2^5+...+2^{59}).3\)chia hết cho 3
Vậy \(A=2+2^2+2^3+2^4+2^5+...+2^{60}\)xhia hết cho 3
A = 2 + 22 + 23 + 24 + 25 + ..........+260
A = ( 2 + 22 + 23 ) + ..........+ ( 2 58+ 259 + 260 )
A = 2 ( 1+ 2 ) + 22 + ..............+ 258 ( 1 + 2 ) + 22
A = 2 x 3 + 4 + ................+ 258 x 3 + 4
Vì 3 chia hết cho 3 nên
A = 2 x 3 + 4 + ................+ 258 x 3 + 4 sẽ chia hết cho 3
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
A=3 + 32 + 33 + .....+3100
=(3+32)+(33+34)+....+(399+3100)
=3.(1+3)+33.(1+3)+...+399.(1+3)
=3.4+33.4+...+399.4
=4.(3+33+...+399) chia hết cho 4
Vậy A chia hết cho 9
Câu 2:
Ta có: \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\)
mà \(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{3.5}.7^{2.8}=3^{15}.7^{16}\)
Vì \(15< 16\)\(\Rightarrow7^{15}< 7^{16}\)
\(\Rightarrow3^{15}.7^{15}< 3^{15}.7^{16}\)\(\Rightarrow21^{15}< 27^5.49^8\)