K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài tập Toán lớp 10 chương 1

Bài 1. Trong các phát biểu dưới đây, câu nào là mệnh đề, câu nào là mệnh đề chứa biến

a. Số 11 là số chẵn.                  b. Bạn có chăm học không?

c. Huế là một thành phố của Việt Nam.    d. 2x + 3 là một số nguyên dương.

e. 4 + x = 3.                       f. Hãy trả lời câu hỏi này!

g. Paris là thủ đô nước Ý.             h. Phương trình x² – x + 1 = 0 có nghiệm.

i. 13 là một số nguyên tố.              j. x² + 1 không phải số nguyên tố.

Bài 2. Trong các mệnh đề sau, mệnh đề nào là đúng? Giải thích.

a. Nếu a chia hết cho 9 thì a chia hết cho 3.      b. Nếu a ≥ b thì a² ≥ b².

c. Nếu a chia hết cho 3 thì a chia hết cho 6.      d. π > 2 và π < 4.

e. 2 và 3 là hai số nguyên tố cùng nhau.         f. 81 là số chính phương.

g. 5 > 3 hoặc 5 < 3.                        h. Số 15 chia hết cho 4 hoặc cho 5.

Bài 3. Trong các mệnh đề sau, mệnh đề nào đúng? Giải thích.

a. Hai tam giác bằng nhau khi và chỉ khi chúng có diện tích bằng nhau.

b. Hai tam giác bằng nhau khi và chỉ khi chúng đồng dạng và có một cạnh bằng nhau.

c. Tam giác là tam giác đều khi và chỉ khi có hai đường trung tuyến bằng nhau và một góc bằng 60°.

d. Một tam giác là tam giác vuông khi và chỉ khi có một góc bằng tổng của hai góc còn lại.

e. Đường tròn có một tâm đối xứng và một trục đối xứng.

f. Hình chữ nhật có hai trục đối xứng.

g. Một tứ giác là hình thoi khi và chỉ khi nó có hai đường chéo vuông góc với nhau.

h. Một tứ giác nội tiếp được đường tròn khi và chỉ khi nó có hai góc vuông.

Bài 4. Cho mệnh đề chứa biến P(x), với số thực x. Tìm x để P(x) là mệnh đề đúng nếu

a. P(x): "x² – 5x + 4 = 0"          b. P(x): "x² – 3x + 2 > 0"

c. P(x): "2x + 3 ≤ 7"             d. P(x): "x² + x + 1 > 0"

Bài 5. Nêu mệnh đề phủ định của các mệnh đề sau:

a. Số tự nhiên n chia hết cho 2 và cho 3.

b. Số tự nhiên n có chữ số tận cùng bằng 0 hoặc bằng 5.

c. Tứ giác ABCD có hai cạnh đối vừa song song vừa bằng nhau.

d. Số tự nhiên n chỉ có 2 ước số là 1 và n.

Bài 6. Nêu mệnh đề phủ định của các mệnh đề sau:

a. ∀x ∈ R, x² > 0.                      b. Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp∈ R, x > x².

c. Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp∈ Q, 4x² – 1 = 0.                 d. ∀x ∈ R, x² – x + 7 > 0.

e. ∀x ∈ R, x² – x – 2 < 0.                f. Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp∈ R, x² = 3.

g. ∀x ∈ N, n² + 1 không chia hết cho 3.      h. ∀x ∈ N, n² + 2n + 5 là số nguyên tố.

i. ∀x ∈ N, n² + n chia hết cho 2.           k. ∀x ∈ N, n² – 1 là số lẻ.

Bài 7. Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định xem mệnh đề phủ định đó đúng hay sai

a. P: "Phương trình x² – x + 1 = 0 có nghiệm."

b. Q: "17 là số nguyên tố"

c. R: "Số 12345 chia hết cho 3"

d. S: "Số 39 không thể biểu diễn thành tổng của hai số chính phương"

e. T: "210 – 1 chia hết cho 11".

Bài 8. Phát biểu các mệnh đề sau sử dụng khái niệm "điều kiện cần", "điều kiện đủ":

a. Nếu một số tự nhiên có chữ số tận cùng là chữ số 5 thì nó chia hết cho 5.

b. Nếu a + b > 0 thì một trong hai số a và b phải dương.

c. Nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3.

d. Số tự nhiên n là số lẻ khi và chỉ khi n² là số lẻ.

e. Nếu a và b đều chia hết cho c thì a + b chia hết cho c.

f. Một số chia hết cho 6 khi và chỉ khi nó chia hết cho 2 và cho 3.

g. Nếu hai tam giác bằng nhau thì chúng có diện tích bằng nhau.

h. Nếu tứ giác là hình thoi thì có hai đường chéo vuông góc với nhau.

i. Nếu tam giác đều thì nó có hai góc bằng nhau.

j. Một tam giác là vuông khi và chỉ khi nó có một góc bằng tổng hai góc còn lại.

k. Một tứ giác là hình chữ nhật khi và chỉ khi nó có ba góc vuông.

l. Một tứ giác nội tiếp được trong đường tròn khi và chỉ khi nó có hai góc đối bù nhau.

m. Hình chữ nhật có hai cạnh liên tiếp bằng nhau là hình vuông và ngược lại.

n. Tam giác có ba đường cao bằng nhau là tam giác đều và ngược lại.

p. Một số tự nhiên có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và ngược lại.

Bài 9. Chứng minh các mệnh đề sau bằng phương pháp phản chứng.

a. Nếu a + b < 2 thì một trong hai số a và b nhỏ hơn 1.

b. Một tam giác không phải là tam giác đều thì có ít nhất một góc nhỏ hơn 60°.

c. Nếu x ≠–1 và y ≠–1 thì x + y + xy ≠–1.

d. Nếu tích của hai số tự nhiên là một số lẻ thì tổng của chúng là một số chẵn.

e. Nếu x² + y² = 0 thì x = 0 và y = 0.

Bài 10. Viết mỗi tập hợp sau bằng cách liệt kê các phần tử trong đó.

a. A = {x ∈ R | (2x² – 5x + 3)(x² – 4x + 3) = 0}

b. B = {x ∈ Z | 2x² – 5x + 3 = 0}

c. C = {x ∈ N | x + 3 < 4 + 2x và 5x – 3 < 4x – 1}

d. D = {x ∈ Z | –1 ≤ x + 1 ≤ 1}

e. E = {x ∈ R | x² + 2x + 3 = 0}

f. F = {x ∈ N | x là số nguyên tố không quá 17}

Bài 11. Viết các tập hợp sau bằng cách chỉ rõ tính chất đặc trưng

a. A = {0; 4; 8; 12; 16}            b. B = {–3; 9; –27; 81}

c. C = {9; 36; 81; 144}            d. D = {3, 6, 9, 12, 15}

e. E = Tập hợp các điểm thuộc đường trung trực của đoạn thẳng AB.

f. H = Tập hợp các điểm thuộc đường tròn tâm I cho trước và có bán kính bằng 5.

Bài 12. Tìm tất cả các tập con, các tập con gồm hai phần tử của các tập hợp sau

a. A = {1; 2; 3}                    b. B = {a; b; c; d}

c. C = {x ∈ R | 2x² – 5x + 2 = 0}       d. D = {x ∈ Q | x² – 4x + 2 = 0}

Bài 13. Trong các tập hợp sau, tập nào là tập con của tập nào?

a. A = {1; 2; 3} và B = [1; 4).

b. A = tập các ước số tự nhiên của 6 và B = tập các ước số tự nhiên của 12.

c. A = tập các hình bình hành và B = tập các hình chữ nhật.

Bài 14. Tìm A ∩ B, A U B, A \ B, B \ A.

a. A = {2, 4, 7, 8, 9, 12}, B = {2, 8, 9, 12}

b. A = {2, 4, 6, 9}, B = {1, 2, 3, 4}

c. A = {x ∈ R | 2x² – 3x + 1 = 0}, B = {x ∈ R | (2x – 1)² = 1}

d. A = tập các ước số của 12, B = tập các ước số của 18.

e. A = {x ∈ R | (x + 1)(x – 2)(x² – 8x + 15) = 0}, B = tập hợp các số nguyên tố có một chữ số.

f. A = {x ∈ R | (x² – 9)(x² – 5x – 6) = 0}, B = {x ∈ R | x ≤ 5}.

Bài 15. Tìm tất cả các tập hợp X sao cho

Bài tập Toán lớp 10 chương 1: Mệnh đề - Tập hợp

Bài 16. Tìm các tập hợp A, B thỏa mãn các điều kiện

a. A ∩ B = {0; 1; 2; 3; 4}, A\B = {–3; –2}, B\A = {6; 9; 10}.

b. A ∩ B = {1; 2; 3}, A\B = {4; 5}, B\A = {6; 9}

Bài 17. Tìm A U B U C, A ∩ B ∩ C với

a. A = [1; 4], B = (2; 6), C = (1; 2)        b. A = (–∞; –2], B = [3; +∞), C = (0; 4)

c. A = [0; 4], B = (1; 5), C = (−3; 1]       d. A = (−5; 1], B = [3; +∞), C = (−∞; −2)

e. A = [3; +∞), B = (0; 4), C = (2; 3)       f. A = (1; 4), B = (2; 6), C = (5; 7]

Bài 18. Cho tập hợp A = {a, b, c, d, e}

a. A có bao nhiêu tập hợp con khác nhau.

b. Có bao nhiêu tập con của A có không quá 4 phần tử.

Bài 19. Tìm A ∩ B; A U B; A \ B; B \ A; biết

a. A = (2; +∞) và B = (–11; 5).          b. A = (–∞; 3] và B = (–2; 12).

c. A = [–3; 16] và B = (–8; 10).         d. A = [–11; 9] và B = [–9; 19)

e. A = [2; 6] và B = [3; 5].            f. A = {x ∈ Q| 1 ≤ x ≤ 4} và B = {3; 4; 5}

Bài 20. Xác định các tập hợp sau và biểu diễn chúng trên trục số

a. [–3; 1) ∩ (0; 4]     b. (–∞; 1) U (–2; 3)      c. (–2; 3) \ (0; 7)

d. (–2; 3) \ [0; 7)      e. R \ (3; +∞)          f. R \ {1}

g. R \ (0; 3]         h. [–3; 1] \ (–1; +∞)      i. R ∩ [(–1; 1) U (3; 7)]

j. [– 3;1) U (0; 4]      k. (0; 2] U [–1; 1]       ℓ. (–∞; 12) U (–2; +∞)

m. (–2; 3] ∩ [–1; 4]    n. (4; 7) ∩ (–7; –4)      o. (2; 3) ∩ [3; 5)

p. (–2; 3) \ (1; 5)      q. R \ {2}

Bài 21. Cho A = (2m – 1; m + 3) và B = (–4; 5). Tìm m sao cho

a. A là tập hợp con của B   b. B là tập hợp con của A    c. A ∩ B = ϕ

Bài 22. Tìm phần bù của các tập sau trong tập R

a. A = [–12; 10)          b. B = (–∞; –2) U (2; +∞)     c. C = {x ∈ R | –4 < x + 2 ≤ 5}

4
15 tháng 6 2019

Dài thế viết ra cho tốn sức à bạn

CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1
22 tháng 9 2019

Đáp án: D

Các mệnh đề chứa biến là: a, c, d.

14 tháng 3 2017
Mệnh đề Mệnh đề đảo Phát biểu bằng khái niệm “ điều kiện đủ” Phát biểu bằng khái niệm “điều kiện cần”
Nếu a và b cùng chia hết cho c thì a + b chia hết cho c. Nếu a + b chia hết cho c thì cả a và b đều chia hết cho c. a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c. a + b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5. Các số nguyên chia hết cho 5 thì có tận cùng bằng 0. Một số nguyên tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5. Các số nguyên chia hết cho 5 là điều kiện cần để số đó có tận cùng bằng 0.
Tam giác cân có hai đường trung tuyến bằng nhau Tam giác có hai đường trung tuyến bằng nhau là tam giác cân. Tam giác cân là điều kiện đủ để tam giác đó có hai đường trung tuyến bằng nhau. "Hai trung tuyến của một tam giác bằng nhau là điều kiện cần để tam giác đó cân.
Hai tam giác bằng nhau có diện tích bằng nhau Hai tam giác có diện tích bằng nhau là hai tam giác bằng nhau. Hai tam giác bằng nhau là điều kiện đủ để hai tam giác đó có diện tích bằng nhau. Hai tam giác có diện tích bằng nhau là điều kiện cần để hai tam giác đó bằng nhau.
2 tháng 4 2017

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.


1/Trong các mệnh đề sau, mệnh đề nào sai?A. Tất cả các số tự nhiên đều không âm.       B. Nếu tứ giác  có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác  là hình bình hành.  C. Nếu tứ giác  là hình chữ nhật thì tứ giác  có hai đường chéo bằng nhau.    D. Nếu tứ giác  là hình thoi thì tứ giác  có hai đường chéo vuông góc với nhau.2/ Chọn khẳng...
Đọc tiếp

1/Trong các mệnh đề sau, mệnh đề nào sai?

A. Tất cả các số tự nhiên đều không âm.       

B. Nếu tứ giác  có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác  là hình bình hành.  

C. Nếu tứ giác  là hình chữ nhật thì tứ giác  có hai đường chéo bằng nhau.    

D. Nếu tứ giác  là hình thoi thì tứ giác  có hai đường chéo vuông góc với nhau.

2/ Chọn khẳng định sai.

A. Mệnh đề P  và mệnh đề phủ định , nếu  P đúng thì P- sai và điều ngược lại chắc đúng.

B.  Mệnh đề P  và mệnh đề phủ định P- là hai câu trái ngược nhau.

C. Mệnh đề phủ định của mệnh đề P  là mệnh đề không phải P được kí hiệu là P- .

D. Mệnh đề P : “  số pi là số hữu tỷ” khi đó mệnh đề phủ định P- là: “ sô pi là số vô tỷ”.

4
12 tháng 8 2020

1/Trong các mệnh đề sau, mệnh đề nào sai?

A. Tất cả các số tự nhiên đều không âm.       

B. Nếu tứ giác  có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác  là hình bình hành.  (sai)

C. Nếu tứ giác  là hình chữ nhật thì tứ giác  có hai đường chéo bằng nhau.    

D. Nếu tứ giác  là hình thoi thì tứ giác  có hai đường chéo vuông góc với nhau.

câu 2 không biết làm

12 tháng 8 2020

??? 1B mà sai hả bạn???

16 tháng 5 2017

a) Là một mệnh đề

b) Là một mệnh đề chứa biến

c) Không là mệnh đề, không là mệnh đề chứa biến

d) Là một mệnh đề

26 tháng 10 2021

b

12 tháng 12 2017

Đáp án: C

A: “ số 20 chia hết cho 5” là mệnh đề đúng.

B: “ số  25 chia hết cho 3” là mệnh đề sai.

C: “số 13 là số nguyên tố” là mệnh đề đúng.

C đúng, A đúng nên C  A đúng

 A đúng, B sai nên (C  A)⇒ B là mệnh đề sai.

4 tháng 4 2018

Đáp án A

Dễ thấy mệnh đề P: “5 là số có hai chữ số” là mệnh đề sai nên mệnh đề Q là mệnh đề nào cũng luôn thỏa mãn P => Q là mệnh đề đúng.

Vậy không có mệnh đề nào thỏa mãn bài toán.

13 tháng 4 2016

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

 

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

 

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.

13 tháng 4 2016

a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.

Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.

Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.

Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.

b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.

Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.

Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.

Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.

c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.

Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.

Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.

Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.