Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)
Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)
sao biểu thức khi rút gọn xấu vậy bạn ? đề có sai khum :vv, thế tìm x dài lắm bạn ạ
a, Với x > 0 ; \(x\ne1\)
\(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}-x}\right)\)
\(=\left(\frac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right):\left(\frac{2\sqrt{x}-2-2+x}{x\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{2x}{x-1}\right):\left(\frac{x+2\sqrt{x}-4}{x\left(\sqrt{x}-1\right)}\right)=\frac{2x^2}{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}-4\right)}\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right).\left(\frac{x+1}{x+1+\sqrt{x}}\right)\)
\(=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x+1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}.\frac{1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)
a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy Min P =-1/4
c, Chắc bằng nhau vì cùng dương mà
Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0
b) Đkxd X >=0
Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)
Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0
Hay min p =0
Dấu = xảy ra <=> x=0
Vậy để minP=0<=>x=0
C)Dkxd x>1
CóP>=0(chứng minh trên )
=>|P|=P
\(A=\frac{\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(A=\frac{4}{x-1}\)
b) \(\frac{4}{x-1}=7\)
\(\Leftrightarrow4=7.\left(x-1\right)\)
\(\Leftrightarrow\frac{4}{7}=x-1\)
\(\Leftrightarrow\frac{4}{7}+1=x\)
\(\Leftrightarrow\frac{11}{7}=x\)
\(\Rightarrow x=\frac{11}{7}\)
\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{1}{\sqrt{x}+1}\)
\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{4}{25-x}\)
bổ sung điều kiện cho câu b là x nguyên
\(TH1:x>25< =>P< 0\left(KTM\right)\)
\(TH2:x< 25< =>P>0\)mà x nguyên
\(\frac{4}{25-x}\le4\)
dấu "=" xảy ra khi \(x=24\)
\(< =>MAX:P=4\)
cho S=1-3+32
-33+...+398-399a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu