K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

1. có góc B cộng  góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp

2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.

3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn

16 tháng 4 2016

1. Vì BO vuông góc với BA => góc ABO = 90 độ 
    Vi CO vuông góc với CA => góc ACO = 90 độ 

Xét tứ giác ABOC có : Góc ABC = 90 độ, Góc ACO = 90 độ 

mà 2 góc trên đối nhau và có tổng = 180 độ

=> tứ giác ABOC là tứ giác nội tiếp đường tròn.

Nối A với O, ta được tam giác ABO vuông tại B. 

Vẽ trung tuyến BI của tam giác ABO => IO = IA = IB

=> I là tâm đường tròn ngoại tiếp tứ giác ABOC. 

2. Câu này câu hỏi là gì vậy?

3, 

                            

6 tháng 4 2017

Mk mới có lớp 8 sorry bạn nha!

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

2: Xét ΔABE và ΔAFB có

góc ABE=góc AFB

góc BAE chung

=>ΔABE đồng dạng với ΔAFB

=>AB/AF=AE/AB

=>AB^2=AE*AF

 

7 tháng 5 2018

1) Ta có \(\widehat{ABO}=\widehat{ACO}=90độ\left(gt\right)\)

Do đó\(\widehat{ABO}+\widehat{ACO}=180độ\)

Nên tứ giác ABOC nội tiếp đường tròn đường kính AO

Tâm đường tròn ngoại tiếp tứ giác ABOC là trung điểm AO.

2) Xét ΔABD và ΔAEB có

\(\widehat{BAE}\)chung

\(\widehat{ABD}=\widehat{AEB}\)(góc tạo bởi tia tiếp tuyến và dây và góc nội tiếp cùng chắn \(\widebat{BD}\))

Nên ΔABD {\displaystyle \backsim } ΔAEB

Do đó \(\frac{AB}{AE}\)=\(\frac{AD}{AB}\)

Hay AB2= AE.AD

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

11 tháng 3 2022

Cho đường tròn tâm OO bán kính OAOA. Điểm CC thuộc đoạn thẳng AOAO (CC khác AA và OO). Đường thẳng vuông góc với AOAO tại CC cắt đường tròn (O)(O) tại hai điểm DD và KK. Tiếp tuyến tại DD của đường tròn (O)(O) cắt đường thẳng AOAO tại EE. Tiếp tuyến tại AA của đường tròn (O)(O) cắt đường thẳng DEDE tại FF. Gọi HH là giao điểm của hai đường thẳng FOFO và DKDK.

Chứng minh các tứ giác AFDOAFDO và AHOKAHOK là tứ giác nội tiếp.

 xet tu giac AFDO co: goc FAO=FDO=90(gt)

=> tu giac AFDO noi tiep ( tong 2 goc doi dien bang 180)

vi OA vuong goc voi DK tai C (gt) va D,K thuoc (O)

=> OC la duong trung truc cua DK 

=> tam giac ODK can tai O

=> goc ODK = OKD (1)

Mat khac, ta lai co F nam ngoai (O);

FA va FD lan luot la cac tiep tuyen cua (O)

=> FO vuong goc voi AD 

va ta thay DC vuong goc voi OA

nen H la truc tam cua tam giac OAD

=>AH vuong goc voi OD=> AH song song voi ED

=> goc HAO=DEO (dong vi) (2)

Ta thay goc DEO= 90- goc DOE (tong 3 goc trong tam giac DOE)

va goc ODK=90- goc DOE (tong 3 goc trong tam giac DOK)

=>goc ODK=DEO (3)

Tu (1);(2);(3)=> goc OAH=OKH

=>tu giac AHOK noi tiep

 

30 tháng 11 2023

a) Nhận thấy \(\widehat{OBA}=\widehat{OCA}=90^o\) nên tứ giác ABOC nội tiếp đường tròn đường kính OA.

b) Nhân thấy \(\widehat{OID}=\widehat{OBD}=90^o\) nên tứ giác OIBD nội tiếp đường tròn đường kính OD \(\Rightarrow\widehat{IDO}=\widehat{IBO}\)

 Lại có \(\widehat{IBO}=\widehat{CBO}=\widehat{BCO}\) nên dễ dàng suy ra đpcm.

c) Dễ chứng minh tứ giác OCFI nội tiếp \(\Rightarrow\widehat{OCB}=\widehat{OCI}=\widehat{OFI}=\widehat{OFD}\) 

Theo câu b, ta có \(\widehat{FDO}=\widehat{IDO}=\widehat{BCO}\) nên dẫn đến \(\widehat{OFD}=\widehat{FDO}\). Do đó tam giác ODF cân tại O. (đpcm)

d) Tam giác ODF cân tại F có đường cao OI nên I là trung điểm DF.

Mặt khác, có I là trung điểm BE nên tứ giác BDEF là hình bình hành.

\(\Rightarrow\) EF//BD hay EF//AB.

Lại có E là trung điểm BC nên F là trung điểm AC (đpcm)