K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔAHO đồng dạng với ΔEIO

=>AH/EI=OH/OI

=>AH*OI=EI*OH(4)

ΔAHO đồng dạng với ΔIDO

=>AH/ID=OA/OI

=>AH*OI=OA*ID

=>OA*ID=EI*OH

=>OC*ID=EI*OH

=>IE/OC=ID/OH

góc HOC+góc AOH=180 độ

góc DIO+góc AOH=90 độ

=>góc OIE+góc DIO+góc AOH=180 độ

=>gosc EID+góc AOH=180 độ

=>góc HOC=góc EID

=>ΔEID đồng dạng với ΔCOH

=>góc IED=góc OCH

mà góc IED=góc AKD

nên góc OCH=góc AKD

=>ΔAKD đồng dạng với ΔACH

=>AK/AC=AD/AH

=>AK*AH=AD*AC=R^2

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD=...
Đọc tiếp

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.

 

0

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

16 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại trung điểm H của AB

b: Xét (O) có

\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP

\(\widehat{AQP}\) là góc nội tiếp chắn cung AP

Do đó: \(\widehat{MAP}=\widehat{AQP}\)

=>\(\widehat{MAP}=\widehat{MQA}\)

Xét ΔMAP và ΔMQA có

\(\widehat{MAP}=\widehat{MQA}\)

\(\widehat{AMP}\) chung

Do đó: ΔMAP đồng dạng với ΔMQA

=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)

Xét (O) có

ΔQAP nội tiếp

QP là đường kính

Do đó: ΔQAP vuông tại A

Xét ΔHAP vuông tại H và ΔHQA vuông tại H có

\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)

Do đó: ΔHAP đồng dạng với ΔHQA

=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)

=>\(MA\cdot HQ=MQ\cdot HA\)

31 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó; MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: Ta có: ΔONC cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)NC tại I

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2\)

=>\(OH\cdot OM=R^2\)

Xét ΔOIM vuông tại I và ΔOHK vuông tại H có

\(\widehat{IOM}\) chung

Do đó: ΔOIM đồng dạng với ΔOHK

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OK}\)

=>\(OI\cdot OK=OH\cdot OM=R^2\)

=>\(OI\cdot OK=OC\cdot OC\)

=>\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

Xét ΔOIC và ΔOCK có

\(\dfrac{OI}{OC}=\dfrac{OC}{OK}\)

\(\widehat{IOC}\) chung

Do đó: ΔOIC đồng dạng với ΔOCK

=>\(\widehat{OIC}=\widehat{OCK}\)

=>\(\widehat{OCK}=90^0\)

=>KC là tiếp tuyến của (O)

31 tháng 12 2023

thank bro

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

29 tháng 12 2021

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB