K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔAHO đồng dạng với ΔEIO

=>AH/EI=OH/OI

=>AH*OI=EI*OH(4)

ΔAHO đồng dạng với ΔIDO

=>AH/ID=OA/OI

=>AH*OI=OA*ID

=>OA*ID=EI*OH

=>OC*ID=EI*OH

=>IE/OC=ID/OH

góc HOC+góc AOH=180 độ

góc DIO+góc AOH=90 độ

=>góc OIE+góc DIO+góc AOH=180 độ

=>gosc EID+góc AOH=180 độ

=>góc HOC=góc EID

=>ΔEID đồng dạng với ΔCOH

=>góc IED=góc OCH

mà góc IED=góc AKD

nên góc OCH=góc AKD

=>ΔAKD đồng dạng với ΔACH

=>AK/AC=AD/AH

=>AK*AH=AD*AC=R^2

16 tháng 8 2021

YjgvnWe.png

( mấy cái cơ bản thì tự viết nhé )

a) góc MAO và góc MBO= 90 độ

xét tứ giác MAOB có góc MAO+MBO=180 độ

=> MAOB nội tiếp

b) Xét (O) có EB là tiếp tuyến của (O)

\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)

Xét tam giác EDB và tam giác EBA có:

\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)

\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)

\(\Rightarrow BE^2=AE.DE\left(1\right)\)

Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)

Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)

\(\Rightarrow\widehat{DME}=\widehat{MAD}\)

Xét tam giác EMD và tam giác EAM có: 

\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)

\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)

\(\Rightarrow ME^2=DE.AE\left(2\right)\)

Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)

c)  mai nốt :V

16 tháng 8 2021

c) El à trung điểm MB;H là trung điểm AB

-> EH là đường trung bình tam giác MAB

=> EH// MA

=> góc EHB= góc MAB ( đồng vị )

Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )

=> góc EHB= góc AKB

mà góc EHB+ góc IHB = 180 độ

=> góc AKB + góc IHB = 180 độ

=> BHIK nội tiếp

=> góc BHK= BIK  mà góc BHK= 90 độ

=> góc BIK= 90 độ

=> AK vuông góc với BI 

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD=...
Đọc tiếp

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.

 

0
16 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại trung điểm H của AB

b: Xét (O) có

\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP

\(\widehat{AQP}\) là góc nội tiếp chắn cung AP

Do đó: \(\widehat{MAP}=\widehat{AQP}\)

=>\(\widehat{MAP}=\widehat{MQA}\)

Xét ΔMAP và ΔMQA có

\(\widehat{MAP}=\widehat{MQA}\)

\(\widehat{AMP}\) chung

Do đó: ΔMAP đồng dạng với ΔMQA

=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)

Xét (O) có

ΔQAP nội tiếp

QP là đường kính

Do đó: ΔQAP vuông tại A

Xét ΔHAP vuông tại H và ΔHQA vuông tại H có

\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)

Do đó: ΔHAP đồng dạng với ΔHQA

=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)

=>\(MA\cdot HQ=MQ\cdot HA\)