K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2022

Tổng 3 chữ số đầu và 3 chữ số cuối là 2+3+4+5+6+7=27, hiệu của chúng là 3

\(\Rightarrow\) Tổng 3 chữ số đầu là 12

\(\Rightarrow\) 3 chữ số đầu là (2;3;7); (2;4;6);(3;4;5) có 3 trường hợp (với mỗi bộ 3 chữ số đầu sẽ có đúng 1 bộ 3 chữ số cuối tương ứng)

\(\Rightarrow\) Có \(3.3!.3!=108\) số thỏa mãn

31 tháng 7 2018

Vậy số cách để lập số có 6 chữ số khác nhau sao cho tổng ba số đầu nhỏ hơn tổng ba số cuối một đơn vị là6hhA5ft9n0Pv.png

4 tháng 12 2019

Đáp án B    

Số cần lập là  a b c d e f , ta có a + b + c – 1 = d + e + f <=> 20 = 2(d + e + f) <=> d + e + f = 10

Với mỗi  f ∈ { 1 ; 3 ; 5 }  => d, e có 4 cách chọn, suy ra  a b c d e f  4.3! = 24 cách chọn

Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài.

11 tháng 6 2017

Gọi  là số cần lập 1 + a2 + a3 = 10

Theo bài ra ta có:  (1)

 và đôi một khác nhau nên

 a1,a2,a3,a4,a5,a6 = 1 + 2 + 3 + 4 + 5 + 6 =21

 

 (2)

Từ (1), (2) suy ra: 1 + a2 + a3 = 10  

Phương trình này có các bộ nghiệm là: ( a­1 , a2  , a3 ) = (1,3,6); (1,4,5); (2,3,5)

Với mỗi bộ ta có 3!.3!=36  số.

Vậy có cả 3.36=108  số cần lập.

Chọn C.

20 tháng 10 2017

Chọn đáp án C

Cách 1: Gọi x = a 1 a 2 . . . a 6 ¯ , a i ∈ 1 , 2 , 3 , 4 , 5 , 6 là số cần lập

Theo bài ra ta có:

 

Mà a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ∈ 1 , 2 , 3 , 4 , 5 , 6  và đôi một khác nhau nên

Từ (1), (2) suy ra: a 1 + a 2 + a 3 = 10

Phương trình này có các bộ nghiệm là:

 

Với mỗi bộ ta có 36 số.

Vậy có cả thảy 3.36=108 số cần lập.

Cách 2: Gọi x = a b c d e f  là số cần lập

Ta có:

 

⇒ a + b + c = 11 .

Do a , b , c ∈ 1 , 2 , 3 , 4 , 5 , 6  

Suy ra ta có các cặp sau:

Với mỗi bộ như vậy ta có 3! cách chọn a, b, c và 3! cách chọn d ,e ,f  

Do đó: 3!.3!.3!= 108 số thỏa yêu cầu bài toán

26 tháng 10 2018

17 tháng 5 2016

Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10

Dễ thấy       1+3+6 = 1+4+5 = 2+3+5

Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)

Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)

Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)

(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)

Theo quy tắc nhân ta có 3.6.6 = 108

Vậy có 108 số cần tìm

16 tháng 5 2020

Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??

NV
8 tháng 12 2021

Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)

Mặt khác \(a+b+c=d+e+f-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)

\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)

Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)

Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)

2 tháng 11 2019

Chọn D

Từ các chữ số 1; 2; 3; 4; 5; 6 ta lập các số tự  nhiên có 6 chữ số khác nhau, lập được 6! = 720 số. Vậy số phần tử của không gian mẫu là  n ( Ω ) = 720 số

Gọi a b c d e f ¯  là số tự nhiên có 6 chữ số khác nhau thuộc biến cố A.

Ta có: 

Từ sáu chữ số 1; 2; 3; 4; 5; 6 ta phân chia thành bộ ba số có tổng là 9 và bộ ba số có tổng là 12, có 3 cách phân chia, đó là (1;2;6) và (3;4;5), (1;3;5) và (2;4;6), (2;3;4) và (1;5;6). Trong mỗi cách phân chia này, ta lập được 3!.3! = 36 số. Do đó n(A) = 3.36 = 108.

Vậy xác suất của biến cố A là: 


NV
25 tháng 12 2020

Các bộ 3 số thỏa mãn: (1;2;7);(1;3;6);(1;4;5);(2;3;5) tổng cộng 4 bộ số

Với mỗi bộ số ta có \(3!\) cách hoán vị

Do đó có: \(3!.4=24\) số