K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(\dfrac{1+\sqrt{a}}{1-\sqrt{a}}=\dfrac{a+2\sqrt{a}+1}{1-a}\)

b) \(\dfrac{a-2\sqrt{a}}{2-\sqrt{a}}=\dfrac{-\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}=-\sqrt{a}\)

a) \(\dfrac{a}{3\sqrt{a}-1}=\dfrac{a\left(3\sqrt{a}+1\right)}{9a-1}\)

3 tháng 8 2021

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\\ =\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\\ =\left(1+2\sqrt{a}+a\right).\dfrac{1}{\left(1+\sqrt{a}\right)^2}\\ =\left(1+\sqrt{a}\right)^2.\dfrac{1}{\left(1+\sqrt{a}\right)^2}=1\)

15 tháng 11 2023

a: \(\dfrac{\sqrt{5}}{\sqrt{7}}=\dfrac{\sqrt{5\cdot7}}{7}=\dfrac{\sqrt{35}}{7}\)

b: \(\dfrac{2}{\sqrt{a}-1}=\dfrac{2\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{2\sqrt{a}+2}{a-1}\)

\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)

Để A>B thì A-B>0

=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)

=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)

=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)

=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)

TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)

TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

9 tháng 6 2016

b, \(a+b+2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\) ( Vì a, b >= 0 )

c, \(a+b-2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}-2\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)( Vì a, b >= 0 )

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

14 tháng 10 2022

1: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

=>(x+y)^2>=4xy

=>(x-y)^2>=0(luôn đúng)

2: \(\Leftrightarrow a^3+b^3-a^2b-ab^2>=0\)

=>a^2(a-b)-b^2(a-b)>=0

=>(a-b)^2(a+b)>=0(luôn đúng)