K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2015

\(i_1 = \frac{\lambda_1D_1}{a}\)

\(i_2 = \frac{\lambda_2D_2}{a}\)

=> \(\frac{i_1}{i_2} = \frac{\lambda_1D_1}{\lambda_2D_2} \)

=> \(\frac{\lambda_1}{\lambda_2} = \frac{i_1D_2}{i_2D_1} = \frac{1.2}{3.1}= \frac{2}{3}\) (do \(i_2 = 3i_1; D_2 = 2D_1\))

=> \(\lambda_2 = \frac{3\lambda_1}{2} = \frac{3.0,4}{2} = 0,6 \mu m.\)

Chọn đáp án.A

24 tháng 5 2016

Ta có: \(i_1=3,5/7=0,5mm\)

\(i_2=7,2/8=0,9mm\)

Vân sáng: \(i=\dfrac{\lambda D}{a}\)

Suy ra: \(\dfrac{i_1}{i_2}=\dfrac{\lambda_1}{\lambda_2}\Rightarrow \lambda_2=\lambda_1.\dfrac{i_2}{i_1}=420.\dfrac{0,9}{0,5}=756nm\)

29 tháng 1 2015

Khoảng cách giữa 2 vân sáng gần nhau nhất cùng màu với vân trung tâm: \(x_T=k_1i_1=k_2i_2\)(1)

\(\Rightarrow k_1\lambda_1=k_2\lambda_2\Rightarrow\frac{k_1}{k_2}=\frac{\lambda_2}{\lambda_1}=\frac{0,6}{0,48}=\frac{5}{4}\)

\(\Rightarrow\begin{cases}k_1=5\\k_2=4\end{cases}\)

Thay vào (1) \(x_T=5i_1=4i_2\)

Như vậy tại vị trí 2 vân trùng nhau kể từ vân trung tâm có vân bậc 5 của \(\lambda_1\) và bậc 4 của \(\lambda_2\)

Do đó, giữa 2 vân sáng cùng màu vân trung tâm có: 4 vân sáng λ1 và 3 vân sáng λ­2.     

Đáp án A.

8 tháng 6 2016

Câu hỏi của Thu Hà - Vật lý lớp 12 | Học trực tuyến

14 tháng 2 2016

\(i_1 = \frac{\lambda_1 D}{a}\\ i_2 = \frac{\lambda_2 D}{a}\)=> \( \frac{i_1}{i_2}= \frac{\lambda _1}{\lambda_2}= \frac{540}{600}=0,9.\)

=> \(i_2 = \frac{i_1}{0,9}=0,4 mm.\)

27 tháng 11 2016

Khoảng cách giữa 2 vân sáng liên tiếp có màu giống màu vân chính giữa là: \(x_T\)

\(\Rightarrow x_T=k_1.i_1=k_2.i_2\)

\(\Rightarrow k_1.\lambda_1=k_2.\lambda_2\)

\(\Rightarrow\dfrac{k_1}{k_2}=\dfrac{\lambda_2}{\lambda_1}=\dfrac{4}{3}\)

\(\Rightarrow k_1=4;k_2=3\)

\(\Rightarrow 2,56=4.i_1=3.i_2\)

\(\Rightarrow i_1=0,64mm\); \(i_2=0,85mm\)

\(\Rightarrow \lambda_2=\dfrac{1,5.0,85}{2}=0,64\mu m\)

4 tháng 6 2016

 + Ban đầu M là vân tối thứ 3 nên: \(x_M=\left(2+\frac{1}{2}\right)\frac{\lambda D}{a}\left(1\right)\)
+ Khi giãm S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc n nên: \(x_M=n\frac{\lambda D}{a-\Delta a}\left(2\right)\)
+ Khi tăng S1S2 một lượng \(\Delta\)a thì M là vân sáng bậc 3n nên: \(x_M=3n\frac{\lambda D}{a+\Delta a}\left(3\right)\)
+ (2) và (3) \(\Rightarrow k\frac{\lambda D}{a-\Delta a}=3k\frac{\lambda d}{a+\Delta a}\Rightarrow\Delta a=\frac{a}{2}\)
+ Khi tăng S1S2 một lượng 2\(\Delta\)a thì M là sáng bậc k nên: \(x_M=k\frac{\lambda D}{a+2\Delta a}=2,5\frac{\lambda D}{a}\left(4\right)\)
+ Từ (1) và (4) \(\Rightarrow\) k = 5. Vậy tại M lúc này là vân sáng bậc 5.

18 tháng 1 2016

Xây dựng từ phần lý thuyết, hiệu đường đi của ánh sáng từ hai khe đến vân tối thứ \(k+1\) là 

\(d_2-d_1 = (k+0,5)\lambda.\)

Áp dụng với \(k+1 = 3\) => \(d_2-d_1 = (2+0,5)\lambda = 2,5 \lambda.\)

 

25 tháng 5 2016

Điều kiện vân trùng:  \(k_1.\lambda_1=k_2.\lambda_2\)

\(\Rightarrow \lambda_2=\dfrac{k_1\lambda_1}{k_2}\)
Mặt khác \(k_1-1+k_2-1=9 ==> k_1+k_2=11 ==> k_1=11-k_2 \)

Ta có:  \(0,38 \le \lambda_2 \le 0,76\)
==> \(0,38 \le \frac{11.\lambda_1}{k_2} - \lambda_1 \le 0,76\)
==> \(0,38 \le \frac{4,851}{k_2}-0,4410 \le 0,76\)
==> \(k_2<5,9 ; k_2>4,03 ==> k=5 ==> \lambda_2=6.\lambda_1/5=5292A^o\)

25 tháng 5 2016

tai sao lại k1-1+k2-1 = 9 v bạn