Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P là trung điểm MN \(\Rightarrow P\left(0;-1\right)\)
\(\overrightarrow{MN}=\left(2;-4\right)=2\left(1;-2\right)\Rightarrow\) trung trực của MN nhận (1;-2) là 1 vtpt
Phương trình trung trực MN:
\(1\left(x-0\right)-2\left(y+1\right)=0\Leftrightarrow x-2y-2=0\)
Gọi I là tâm đường tròn cần tìm \(\Rightarrow\) I là giao điểm của d và trung trực MN
Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x-2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{4}{3};-\dfrac{5}{3}\right)\)
\(\overrightarrow{IM}=\left(\dfrac{1}{3};\dfrac{8}{3}\right)\Rightarrow R^2=IM^2=\dfrac{65}{9}\)
Phương trình: \(\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)
Vì B thuộc đường thẳng (AB) nên \(B\left(a;1-2a\right)\)
Tương tự \(C\left(-2-4b;3b\right)\)
Ta có : \(\overrightarrow{MB}=\left(a-1;4-2a\right);\overrightarrow{MC}=\left(-3-4b;3b+3\right)\)
Ta có \(\left(AB\right)\cap\left(AC\right)=\left\{A\right\}\Rightarrow A\left(2;-3\right)\)
Vì B, M, C thẳng hàng, \(3MB=2MC\) nên ta có : \(3\overrightarrow{MB}=2\overrightarrow{MC}\) hoặc \(3\overrightarrow{MB}=-2\overrightarrow{MC}\)
- Trường hợp 1 : \(3\overrightarrow{MB}=2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=2\left(-3-4b\right)\\3\left(4-2a\right)=2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{11}{5}\\b=\frac{-6}{5}\end{cases}\)
\(\Rightarrow B\left(\frac{11}{5};-\frac{17}{5}\right);C\left(\frac{11}{5};-\frac{18}{5}\right)\Rightarrow G\left(\frac{7}{3};\frac{10}{3}\right)\)
- Trường hợp 2 : \(3\overrightarrow{MB}=-2\overrightarrow{MC}\Rightarrow\begin{cases}3\left(a-1\right)=-2\left(-3-4b\right)\\3\left(4-2a\right)=-2\left(3b+3\right)\end{cases}\)\(\Rightarrow\begin{cases}a=3\\b=0\end{cases}\)
\(\Rightarrow B\left(3;-5\right);C\left(-2;0\right)\Rightarrow G\left(1;\frac{-8}{3}\right)\)
Đường tròn (C) có tâm \(I\left(1;2\right)\) và có bán kính \(R=2\)
I nằm trên d nên I(x;-2x-5)
IA=IB=R
=>(x-1)^2+(-2x-5+3)^2=(x+3)^2+(-2x-5-1)^2
=>x^2-2x+1+4x^2+8x+4=x^2+6x+9+4x^2+24x+36
=>6x+5=30x+45
=>-24x=40
=>x=-5/3
=>I(-5/3;-5/3)
A(1;-3)
=>R=4/3*căn 5
=>(C): (x+5/3)^2+(y+5/3)^2=80/9
Lời giải:
Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$
Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$
$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$
$\Rightarrow a=0$ và $R^2=10$
Vậy PTĐTr là: $(x-1)^2+y^2=10$
Giả sử \(I=\left(2m+1;m\right)\)
Ta có: \(IA=IB\)
\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)
\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)
\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)
\(\Leftrightarrow m=0\)
\(\Rightarrow I=\left(1;0\right)\)
Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)
Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)