Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số cách chọn 4 bạn trong 10 bạn nam là: \(C_{10}^4= 210\)
b) Số cách chọn 4 bạn trong tổng 17 bạn (không phân biệt nam, nữ) là: \(C_{17}^4= 2380\)
c) Số cách chọn 4 bạn, trong đó có 2 bạn nam và 2 bạn nữ là: \(C_{10}^2.C_7^2=45. 21= 945\)
+) Số cách chọn 3hs bất kì trong 34hs là: \(C_{34}^3\) ( cách chọn)
+) Số cách chọn 3hs nam trong 34hs là: \(C_{18}^3\) ( cách chọn)
+) Số cách chọn 3hs nữ trong 34hs là: \(C_{16}^3\) ( cách chọn)
+) Số cách chọn 3hs gồm cả nam và nữ trong 34hs là: \(C_{34}^3 - C_{18}^3 - C_{16}^3 = 4608\) ( cách chọn)
a) Ba cách chọn cặp đấu sẽ là:
+) Cách 1: Chọn Mạnh và Phong
+) Cách 2: Chọn Cường và Tiến
+) Cách 3: Chọn Phong và Cường
b) Mỗi cặp đấu gồm có 2 người nên mỗi cặp đấu là một tập con gồm 2 phần tử được lấy ra từ tập hợp gồm 4 bạn nói trên.
a) Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)
b) Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)
c) Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)
Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)
Cách chọn 2 bạn từ 7 bạn là \(C_{7}^2 \Rightarrow n\left( \Omega \right) = C_{7}^2 = 21\)
Gọi A là biến cố: “Hai bạn được chọn có một bạn nam và một bạn nữ”.
Cách chọn một bạn nam là: 3 cách chọn
Cách chọn một bạn nữ là: 4 cách chọn
Theo quy tắc nhân ta có \(n\left( A \right) = 3.4 = 12\)
Vậy xác suất của biến cố A là \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{12}}{{21}} = \frac{4}{7}\).
Chọn A
a. \(C^1_7=7\left(cách\right)\)
b. \(C^1_3=3\left(cách\right)\)
c. Số cách không ra bạn nữ là chỉ chọn nam, vậy số cách chọn ít nhất 1 nữ là: \(7-3=4\left(cách\right)\)
a) Ba cách sắp xếp bốn bạn trên theo thứ tự
- Hà, Mai, Nam, Đạt.
- Hà, Mai, Đạt, Nam
- Hà, Đạt, Mai, Nam
Chú ý: Có thể chọn các cách xếp khác, không nhất thiết phải giống trên.
b) Ta thực hiện các bước:
- Chọn bạn đứng đầu có 4 cách
- Chọn bạn đứng thứ hai có 3 cách
- Chọn bạn đứng thứ ba có 2 cách
- Chọn bạn đứng cuối có 1 cách
Vậy có 4.3.2 = 24 cách sắp xếp thứ tự bốn bạn trên để tham gia phỏng vấn.
a) Việc chọn một học sinh đi dự buổi giao lưu là thực hiện một trong hai hoạt động sau:
Chọn một học sinh nam: Có 245 cách chọn.
Chọn một học sinh nữ: Có 235 cách chọn.
Vậy có 245 +235 cách chọn một học sinh đi dự buổi giao lưu.
b) Việc chọn hai học sinh đi dự trại hè cần thực hiện liên tiếp hai hoạt động sau:
Chọn một học sinh nam: Có 245 cách chọn.
Chọn một học sinh nữ: Có 235 cách chọn.
Vậy có 245.235=57575 cách chọn hai học sinh đi dự trại hè.
Chú ý
Câu b: ta có thể thay đổi thứ tự thực hiện là: chọn một học sinh nữ, sau đó chọn 1 học sinh nam.
a) Để chọn một học sinh ở khối 10 đi dự buổi giao lưu, ta thực hiện một trong hai hành động sau:
+ Chọn một học sinh nam: Có 245 cách chọn.
+ Chọn một học sinh nữ: Có 235 cách chọn.
Vậy nhà trường có 245 + 235 = 480 cách chọn một học sinh.
b) Để chọn hai học sinh, trong đó có 1 nam và 1 nữ đi dự trại hè, ta thực hiện hai hành động liên tiếp: chọn một học sinh nam và chọn một học sinh nữ.
+ Chọn một học sinh nam: Có 245 cách chọn.
+ Chọn một học sinh nữ: Có 235 cách chọn
Vậy nhà trường có 245 . 235 = 57 575 cách chọn hai học sinh 1 nam và 1 nữ.
Mỗi cách chọn 3 bạn nam trong 10 bạn nam là một tổ hợp chập 3 của 10 phần tử.
Do đó có \(C_{10}^3 = 120\) (cách chọn)