K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Ba cách sắp xếp bốn bạn trên theo thứ tự

-  Hà, Mai, Nam, Đạt.

-  Hà, Mai, Đạt, Nam

- Hà, Đạt, Mai, Nam

  Chú ý: Có thể chọn các cách xếp khác, không nhất thiết phải giống trên.

b)    Ta thực hiện các bước:

- Chọn bạn đứng đầu có 4 cách

- Chọn bạn đứng thứ hai có 3 cách

- Chọn bạn đứng thứ ba có 2 cách

- Chọn bạn đứng cuối có 1 cách

Vậy có 4.3.2 = 24  cách sắp xếp thứ tự bốn bạn trên để tham gia phỏng vấn.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a, Có 3 cách để chọn nhóm trình bày thứ nhất.

b, Sau khi đã chọn nhóm trình bày thứ nhất thì còn lại 2 nhóm, vì vậy có 2 cách để chọn nhóm trình bày thứ 2.

c, Sau khi đã chọn nhóm trình bày thứ nhất và thứ hai thì còn lại một nhóm duy nhất nên ta có 1 cách chọn nhóm trình bày thứ 3.

d, Áp dụng quy tắc nhân, số hoán vị được tạo ra là: 3.2.1 = 6 (hoán vị).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Mỗi cách sắp xếp 5 bạn học sinh vào 5 chiếc ghế là một hoán vị của 5 bạn học sinh. Do đó, số cách sắp xếp 5 bạn học sinh ngồi vào 5 cái ghế là hoán vị là:

                   \({P_5} = 5!\) (cách)

b) Khi bạn Nga nhất định ngồi vào chiếc ghế ngoài cùng bên trái, thì số cách sắp xếp là số cách sắp xếp 4 bạn còn lại vào 4 chiếc ghế, mỗi cách như vậy là một hoán vị của 4 bạn học sinh. Do đó, số cách sắp xếp là:

                             \({P_4} = 4! = 24\) (cách)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)      Bước 1: Chọn 1 bạn từ 4 bạn trên: có 4 cách

Bước 2: Chọn 1 bạn từ 3 bạn còn lại

Do hai bạn có vai trò như nhau nên ta chia kết quả cho 2 để loại trường hợp trùng.

Có 4.2: 2 = 6 cách chọn hai bạn từ 4 bạn trên.

b)    Chọn nhóm trưởng: có 4 cách

Chọn nhóm phó: có 3 cách

Theo quy tắc nhân , có 4.3 = 12 cách chọn hai bạn, trong đó một bạn làm nhóm trường, một bạn làm nhóm phó.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a, Có 5 cách chọn nhóm trình bày thứ nhất.

b, Sau khi đã chọn nhóm trình bày thứ nhất, có 4 cách để chọn nhóm trình bày thứ hai.

c, Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có 3 cách để chọn nhóm trình bày thứ ba.

d, Theo quy tắc nhân, ta có số chỉnh hợp được tạo ra là: \(5.4.3 = 60\)

12 tháng 8 2023

Chòi oi cái đọc cái đề mà không hiểu chi hết thôi đi ngủ.

𝔅𝔞𝔟𝔶, 𝔶𝔬𝔲 𝔩𝔦𝔤𝔥𝔱 𝔲𝔭 𝔪𝔶 𝔴𝔬𝔯𝔩𝔡 𝔩𝔦𝔨𝔢 𝔫𝔬𝔟𝔬𝔡𝔶 𝔢𝔩𝔰𝔢❤️

Từ các chữ số thuộc tập hợp \(A=\left\{0;1;2;3;...;9\right\}\), lập được bao nhiêu số tự nhiên:a) có bốn chữ số khác nhau sao cho các chữ số được sắp xếp theo thứ tự tăng dần từ trái qua phải?b) có sáu chữ số khác nhau sao cho có mặt chữ số 1 và chữ số 2?c) có sáu chữ số khác nhau sao cho có ba chữ số chẵn và ba chữ số lẻ?d) có sáu chữ số khác nhau sao cho là số lẻ và chữ số đứng...
Đọc tiếp

Từ các chữ số thuộc tập hợp \(A=\left\{0;1;2;3;...;9\right\}\), lập được bao nhiêu số tự nhiên:

a) có bốn chữ số khác nhau sao cho các chữ số được sắp xếp theo thứ tự tăng dần từ trái qua phải?

b) có sáu chữ số khác nhau sao cho có mặt chữ số 1 và chữ số 2?

c) có sáu chữ số khác nhau sao cho có ba chữ số chẵn và ba chữ số lẻ?

d) sáu chữ số khác nhau sao cho là số lẻ và chữ số đứng ở hàng nghìn luôn chia hết cho .

e) chín chữ số khác nhau trong đó mặt các chữ số 0, 1, 2, 3, 4 và các chữ số 1, 2, 3, 4 sắp xếp theo thứ tự tăng dần từ trái qua phải?

g) sáu chữ số khác nhau và là số chẵn lớn hơn 40000?

h) có mười chữ số đôi một khác nhau, trong đó các chữ số 1, 2, 3, 4, 5 được sắp xếp theo thứ tự tăng dần từ trái qua phải và chữ số 6 luôn đứng trước chữ số 5?

k) có ba chữ số khác nhau và chia hết cho 3?

i) có tám chữ số trong đó có 2 chữ số lẻ khác nhau và 3 chữ số chẵn khác nhau mà mỗi chữ số chẵn có mặt đúng hai lần.

1

a:

TH1: Trong 4 số có số 0

=>Số cách là: \(C^3_9\cdot3\cdot3\cdot2\cdot1=1512\left(cách\right)\)

TH2: ko có số 0

=>Số cách là: \(A^4_9=3024\left(cách\right)\)

=>Có 1512+3024=4536 cách

b: TH1: Có số 0

=>Có \(C^3_7\cdot5\cdot5\cdot4\cdot3\cdot2\cdot1=21000\left(cách\right)\)

TH2: ko có số 0

=>Có \(C^4_7\cdot6!=25200\left(cách\right)\)

=>Có 46200 cách

27 tháng 4 2023

loading...  

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Mỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là

                             \({P_6} = 6! = 720\) (cách)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Số cách chọn ra 2 bạn nam bất kì từ 22 bạn nam là: \(C_{22}^2\) (cách chọn)

+) Số cách chọn ra 2 bạn nữ bất kì từ 17 bạn nữ là: \(C_{17}^2\) (cách chọn)

+) Số cách sắp xếp thứ tự thi đấu của 4 bạn là: \(4!\) (cách xếp)

+) Áp dụng quy tắc nhân, ta có số cách lập một đội thi đấu là: \(C_{22}^2.C_{17}^2.4!\) (cách lập)