Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AG}\) Ta có vế trái
\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{EB}+\overrightarrow{AG}+\overrightarrow{GC}+\overrightarrow{AG}+\overrightarrow{GD}\\ =2\overrightarrow{AE}+2\overrightarrow{AG}+\overrightarrow{GC}+\overrightarrow{GD}\\ =2\overrightarrow{AG}+2\overrightarrow{GE}+2\overrightarrow{AG}+\overrightarrow{GC}+\overrightarrow{GD}\\ =4\overrightarrow{AG}+2\overrightarrow{GE}+\overrightarrow{GC}+\overrightarrow{GD}\\ =4\overrightarrow{AG}+2\overrightarrow{GE}+\overrightarrow{GF}+\overrightarrow{FC}+\overrightarrow{GF}+\overrightarrow{FD}\\ =4\overrightarrow{AG}+2\left(\overrightarrow{GF}+\overrightarrow{GE}\right)+\overrightarrow{FC}+\overrightarrow{FD}\\ =4\overrightarrow{AG}\left(đpcm\right)\)
Lời giải:
Gọi tọa độ điểm $M$ là \((a;b)\)
Khi đó: \(\left\{\begin{matrix} \overrightarrow{MA}=\left(\frac{1}{3}-a;2-b\right)\\ \overrightarrow{MB}=(-1-a;-5-b)\\ \overrightarrow{CB}=(-6;-9)\end{matrix}\right.\)
\(\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CB}\)
\(\Leftrightarrow \left(\frac{1}{3}-a;2-b\right)+(-1-a;-5-b)=(-6;-9)\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}-a+(-1-a)=-6\\ 2-b+(-5-b)=-9\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{8}{3}\\ b=3\end{matrix}\right.\)
Vậy tọa độ điểm $M$ là \(\left(\frac{8}{3};3\right)\)
Bài 1
\(\overrightarrow{a}.\overrightarrow{b}=2.\left(-1\right)+\left(-3\right).\left(-4\right)=10\)
Bài 2
Đường thẳng y = ax + b đi qua hai điểm A(1;2) và B (0;3) , ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=2\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
Vậy Pt có dạng \(y=-x+3\)
Bài 3
Ta có (P) và (D) giao điểm thì P=D
\(x^2-4x+1=x-5\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=3\Rightarrow y=-2\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Vậy (P) và (D) giao điểm tại A(3;-2) và B(2;-3)
Bài 4
\(\overrightarrow{AB};\overrightarrow{FD}\)
Bài 5
ta có \(\overrightarrow{u}=\left(2;-3\right)\)\(\Rightarrow\)\(3\overrightarrow{u}=\left(2.3;\left(-3\right).3\right)=\left(6;-9\right)\)
Bài 6
\(C\in Ox\Rightarrow C\left(x;0\right)\)
\(\overrightarrow{\left|AB\right|}=\sqrt{2^2+2^2}=2\sqrt{2}\)
\(\overrightarrow{\left|AC\right|}=\sqrt{x^2+2x+5}\)
Để tam giác ABC cân tại A thì AB=AC
\(\sqrt{X^2+2X+5}=2\sqrt{2}\Rightarrow X^2+2X+1=0\Leftrightarrow X=-1\)
Vậy để tam giác ABC cân tại A thì C(-1;0)
(mk lm câu a theo cái đề bn đã xứa nha )
a) giả sử : \(I\) có tọa độ \(\left(x_I;y_I\right)\)
ta có : \(I\) là trung điểm của \(AB\) \(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{2-4}{2}=-1\\y_I=\dfrac{4+2}{2}=3\end{matrix}\right.\)
vậy điểm \(I\) có tọa độ là \(I\left(-1;3\right)\)
theo đề bài ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\) (1)
mà \(I\) là trung điểm \(AB\) \(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\) (2)
từ (1) và (2) ta có : \(\overrightarrow{MA}=\overrightarrow{IA}\) \(\Leftrightarrow\) \(M\equiv I\)
vậy \(M\equiv I\) thì ta có : \(\overrightarrow{MA}+\overrightarrow{IB}=\overrightarrow{0}\)
b) (lm theo đề đã sữa)
giả sử : điểm \(N\) có tọa độ là \(\left(x_N;y_N\right)\)
vì gốc \(O\) là trọng tâm của tam giác \(ABN\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x_A+x_B+x_N}{3}=0\\\dfrac{y_A+y_B+y_N}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A+x_B+x_N=0\\y_A+y_B+y_N=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2-4+x_N=0\\4+2+y_N=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_N=2\\y_N=-6\end{matrix}\right.\)
vậy điểm \(N\) có tọa độ là \(N\left(2;-6\right)\) thì gốc \(O\) là trọng tâm của tam giác \(ABN\)