\(A\left(1;-2\right);B\left(3;2\right);C\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Gọi điểm D(x,y) là điểm cần tìm.
Tứ giác ABCD là hình bình hành khi và chỉ khi: \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;4\right)\); \(\overrightarrow{DC}\left(-4-x;1-y\right)\).
\(\overrightarrow{AB}=\overrightarrow{DC}\)\(\Leftrightarrow\left\{{}\begin{matrix}-4-x=2\\1-y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)\(\Leftrightarrow D\left(-6;-3\right)\).

31 tháng 3 2017

Tứ giác ABCD là hình bình hành nên

= C

Gọi (x; y) là tọa độ của D thì

= (x-4; y+1)

= (-4;4)

=

Vậy điểm D(0;-5) là điểm cần tìm



18 tháng 5 2017

a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\)\(\overrightarrow{BC}\) cùng phương.
\(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

6 tháng 4 2016

D G F C N E O M B H K J I A

Gọi G là điểm đối xứng của M qua O \(\Rightarrow G=\left(1;-3\right)\in CD\)

Gọi I là điểm đối xứng của M qua O \(\Rightarrow I=\left(-1;5\right)\in AD\)

Phương trình cạnh MO qua M có vec tơ chỉ phương \(\overrightarrow{MO}\) là \(9x-5y-24=0\)
=> Phương trình cạnh NE qua N và vuông góc với MO là \(5x+9y-22=0\)
Gọi E là hình chiếu của N trên MG\(\Rightarrow E=NE\cap MG\Rightarrow E=\left(\frac{163}{53};\frac{39}{53}\right)\)
Lại có \(NE\perp MG\Rightarrow\begin{cases}NJ=MG\\\overrightarrow{NE}=k\overrightarrow{NJ}\end{cases}\) \(\left(k\ne0,k\in R\right)\) \(\Rightarrow J\left(-1;3\right)\) vì \(\overrightarrow{NE,}\overrightarrow{NJ}\) cùng chiều
Suy ra phương trình cạnh AD : \(x+1=0\Rightarrow OK=\frac{9}{2}\). Vì KA=KO=KD nên K, O, D thuộc đường tròn tâm K đường kính OK
Đường tròn tâm K bán kính OK có phương trình : 
\(\left(x+1\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{81}{4}\)
Vậy tọa độ điểm A và D là nghiệm của hệ \(\begin{cases}\left(x+1\right)^2+\left(y-\frac{3}{2}\right)^2=\frac{81}{4}\\x+1=0\end{cases}\)
                                                           \(\Leftrightarrow\begin{cases}\begin{cases}x=-1\\y=6\end{cases}\\\begin{cases}x=-1\\y=-3\end{cases}\end{cases}\)
Suy ra \(A\left(-1;6\right);D\left(-1;-3\right)\Rightarrow C\left(8;-3\right);B\left(8;6\right)\)
Trường hợp \(D\left(-1;6\right);A\left(-1;-3\right)\) loại do M thuộc CD
20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

16 tháng 5 2017

Gọi D(x;y).
Do tứ giác ABCD là hình bình hành nên \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;8\right);\overrightarrow{DC}\left(-x;-1-y\right)\).
Do \(\overrightarrow{AB}=\overrightarrow{DC}\) nên \(\left\{{}\begin{matrix}-x=2\\-1-y=8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-9\end{matrix}\right.\).
Vậy \(D\left(-2;-9\right)\).

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

8 tháng 4 2017

AC đi qua A(1;2) và có VTPT nAC = vec-tơ BH = ( 1;2)
=> AC: 1(x-1) + 2(y-2)=0 <=> x+2y -5=0
BC đi qua B(-3;1) và có VTPT nBC = vec-tơ AH = (-3;1)
=>BC : -3(x+3) + (y-1)=0 <=> -3x + y -10 =0
C là giao điểm của AC và BC nên là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x+2y-5=0\\-3x+y-10=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{15}{7}\\y=\dfrac{25}{7}\end{matrix}\right.\)
Vậy \(C\left(-\dfrac{15}{7};\dfrac{25}{7}\right)\)

17 tháng 4 2017

Chú ý sử dụng các công thức toán học có sẵn.