Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi điểm D(x,y) là điểm cần tìm.
Tứ giác ABCD là hình bình hành khi và chỉ khi: \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;4\right)\); \(\overrightarrow{DC}\left(-4-x;1-y\right)\).
\(\overrightarrow{AB}=\overrightarrow{DC}\)\(\Leftrightarrow\left\{{}\begin{matrix}-4-x=2\\1-y=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\)\(\Leftrightarrow D\left(-6;-3\right)\).
Gọi D(x;y).
Do tứ giác ABCD là hình bình hành nên \(\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}\left(2;8\right);\overrightarrow{DC}\left(-x;-1-y\right)\).
Do \(\overrightarrow{AB}=\overrightarrow{DC}\) nên \(\left\{{}\begin{matrix}-x=2\\-1-y=8\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-9\end{matrix}\right.\).
Vậy \(D\left(-2;-9\right)\).
- Tìm tọa độ điểm I.
\(x_I=\dfrac{x_A+x_C}{2}=\dfrac{-1}{2}\); \(y_I=\dfrac{y_A+y_C}{2}=\dfrac{9}{2}\).
Vậy \(I\left(-\dfrac{1}{2};\dfrac{9}{2}\right)\).
- Tìm tọa độ điểm D.
Gọi \(D\left(x;y\right)\)
Tứ giác ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\).
\(\overrightarrow{AB}=\left(1;-7\right)\); \(\overrightarrow{DC}=\left(4-x;3-y\right)\).
Do \(\overrightarrow{AB}=\overrightarrow{DC}\) nên:
\(\left\{{}\begin{matrix}4-x=1\\3-y=-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-10\end{matrix}\right.\).
Vậy \(D\left(3;-10\right)\).
a)Gọi \(D\left(x;y\right)\) là tọa độ điểm cần tìm.
\(\overrightarrow{AD}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
Tứ giác ABCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{AD}=\overrightarrow{BC}\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=2\\y-4=-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)\(\Rightarrow D\left(4;0\right)\).
b) Gọi\(A'\left(x;y\right)\) là điểm cần tìm. A' thỏa mãn hai điều sau:
- \(AA'\perp BC\). (1)
- A' , B, C thẳng hàng. (2)
\(\overrightarrow{AA'}\left(x-2;y-4\right)\); \(\overrightarrow{BC}\left(2;-4\right)\).
\(\left(1\right)\Leftrightarrow\overrightarrow{AA'}.\overrightarrow{BC}=\overrightarrow{0}\)\(\Leftrightarrow2\left(x-2\right)-4\left(y-4\right)=0\) (3)
(2) suy ra hai véc tơ \(\overrightarrow{A'B}\) và \(\overrightarrow{BC}\) cùng phương.
Có \(\overrightarrow{A'B}\left(1-x;3-y\right)\).
Nên \(\dfrac{1-x}{2}=\dfrac{3-y}{4}\) (4)
Từ (3) và (4) suy ra: \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\).
Vậy A'(1;3).
a) \(x_G=\dfrac{-3+9+\left(-5\right)}{3}=\dfrac{1}{3}\).
\(y_G=\dfrac{6+\left(-10\right)+4}{3}=0\).
Vậy \(G\left(\dfrac{1}{3};0\right)\).
b) Tứ giác BGCD là hình bình hành khi và chỉ khi:
\(\overrightarrow{BG}=\overrightarrow{CD}\).
Gọi \(D\left(x;y\right)\).
\(\overrightarrow{BG}\left(-\dfrac{26}{3};10\right);\overrightarrow{CD}\left(x+5;y-4\right)\).
Do \(\overrightarrow{BG}=\overrightarrow{CD}\) nên \(\left\{{}\begin{matrix}x+5=-\dfrac{26}{3}\\y-4=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{41}{3}\\y=14\end{matrix}\right.\).
Vậy \(D\left(-\dfrac{41}{3};14\right)\).
A B C h d
Từ giả thiết suy ra \(\overrightarrow{AB}=\left(1;4\right)\Rightarrow AB=\sqrt{26}\) và đường thẳng AB có phương trình tổng quát :
\(5x-y-7=0\)
Vì tam giác ABC có \(AB=\sqrt{26}\) và diện tích \(S=8\) nên bài toán quy về tìm điểm \(C\in d:2x+y-2=0\) sao cho \(d\left(C;Ab\right)=\frac{16}{\sqrt{26}}\)
Xét điểm \(C\left(x;2\left(1-x\right)\right)\in d\) ta có :
\(d\left(C;AB\right)=\frac{16}{\sqrt{26}}\Leftrightarrow\frac{\left|5x-2\left(1-x\right)-7\right|}{\sqrt{26}}=\frac{16}{\sqrt{26}}\)
Giải phương trình thu được \(x=-1\) hoặc \(x=\frac{25}{7}\)
Do đó tìm được 2 điểm \(C_1\left(-1;4\right)\) và \(C_2\left(\frac{25}{7};-\frac{36}{7}\right)\) thỏa mãn yêu cầu đề bài
D G F C N E O M B H K J I A
Gọi G là điểm đối xứng của M qua O \(\Rightarrow G=\left(1;-3\right)\in CD\)
Gọi I là điểm đối xứng của M qua O \(\Rightarrow I=\left(-1;5\right)\in AD\)
Tứ giác ABCD là hình bình hành nên
= C
Gọi (x; y) là tọa độ của D thì
= (x-4; y+1)
= (-4;4)
= ⇔ ⇔
Vậy điểm D(0;-5) là điểm cần tìm