K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

Phương trình đường vuông góc kẻ từ M đến d là \(2x+y-6=0\)

Hình chiếu của M trên d có tọa độ là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)

19 tháng 3 2021

không có đáp án đó bạn ơi

NV
26 tháng 3 2022

Phương trình d' qua M và vuông góc d có dạng: 

\(2\left(x-2\right)+1\left(y+2\right)=0\Leftrightarrow2x+y-2=0\)

Hình chiếu vuông góc của M lên d là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-2y+1=0\\2x+y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=\dfrac{4}{5}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{3}{5};\dfrac{4}{5}\right)\)

18 tháng 4 2021

undefined

4 tháng 3 2023

cho em hỏi tại sao chỗ 2y+1,1 toạ độ M tìm sao v ạ

2 tháng 5 2023

Gọi \(AH\) là hình chiếu của \(A\) trên \(d\)

\(\Rightarrow AH:-2x+4y+c'=0\)

AH đi qua \(A\left(1;1\right)\Rightarrow-2.1+4.1+c'=0\)

\(\Rightarrow c'=-2\)

\(\Rightarrow\) phương trình \(AH\) là : \(-2x+4y-2=0\Rightarrow-x+2y-1=0\)

Tọa độ H là nghiệm của hệ phương trình :

\(\left\{{}\begin{matrix}-x+2y-1=0\\4x+2y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{5}\\y=\dfrac{3}{10}\end{matrix}\right.\)

\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

2 tháng 5 2023

 Gọi \(\left(d'\right)\) là đường thẳng qua A và vuông góc với (d). Do (d) có VTPT \(\overrightarrow{n_d}=\left(4;2\right)\) 

\(\Rightarrow\) \(\left(d'\right)\) có VTPT \(\overrightarrow{n_{d'}}=\left(2;-4\right)\) hay \(\left(d'\right):2x-4y+m=0\) \(\left(m\inℝ\right)\)

 Mà \(A\left(1;1\right)\in\left(d'\right)\) nên \(2-4+m=0\Leftrightarrow m=2\). Vậy đường thẳng qua A và vuông góc với \(d\) có pt là \(2x-4y+2=0\) hay \(x-2y+1=0\)

 Do đó hình chiếu vuông góc H của A lên d chính là giao điểm của d' và d. Nếu \(H\) có tọa độ \(\left(x_H;y_H\right)\) thì \(x_H;y_H\) thỏa mãn hệ phương trình \(\left\{{}\begin{matrix}x_H-2y_H+1=0\\4x_H+2y_H+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_H=-\dfrac{2}{5}\\y_H=\dfrac{3}{10}\end{matrix}\right.\)\(\Rightarrow H\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

Vậy hình chiếu của A lên d có tọa độ \(\left(-\dfrac{2}{5};\dfrac{3}{10}\right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Do MH vuông góc với đường thẳng \(\Delta \) nên ta có vecto chỉ phương của MH là: \(\overrightarrow u  = \left( {2;1} \right)\)

b) Phương trình tham số của đường thẳng MH đi qua \(M\left( { - 1;1} \right)\) có vecto chỉ phương\(\overrightarrow u  = \left( {2;1} \right)\) là: \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 1 + t\end{array} \right. \Leftrightarrow x - 2y + 3 = 0\)

c) H là giao điểm của MH và đường thẳng \(\Delta \)

Xét hệ phương trình: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\2x + y - 4 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\) . Vậy tọa độ điểm H là: \(H\left( {1;2} \right)\)

Độ dài đoạn thẳng MH là: \(MH = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {2 - 1} \right)}^2}}  = \sqrt {{2^2} + {1^2}}  = \sqrt 5 \)

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6

 

9 tháng 8 2021

giúp mk vs ạ