\(\left\{{}\begin{matrix}x=-16+4t\\y=-6+3t\end{matrix}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2020

Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t\\y=-6+3t=0\end{matrix}\right.\) \(\Rightarrow M\left(-8;0\right)\)

Tọa độ N thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t=0\\y=-6+3t\end{matrix}\right.\) \(\Rightarrow N\left(0;6\right)\)

Gọi I là trung điểm MN \(\Rightarrow I\left(-4;3\right)\)

\(\overrightarrow{MN}=\left(8;6\right)\Rightarrow MN=10\Rightarrow R=\frac{MN}{2}=5\)

Phương trình đường tròn:

\(\left(x+4\right)^2+\left(y-3\right)^2=25\)

19 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

28 tháng 4 2020

a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)

\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)

\(\left(d\right):3x+4y-11=0\)

b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)

Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<

AH
Akai Haruma
Giáo viên
9 tháng 5 2018

Vì $M$ nằm trên đường thẳng $d$ nên gọi tọa độ điểm $M$ là \((1-2t, -2+4t)\)

Khi đó:

\(AM=\sqrt{(1-2t-2)^2+(-2+4t+5)^2}=\sqrt{(-1-2t)^2+(4t+3)^2}\)

\(=\sqrt{20t^2+28t+10}=\sqrt{20(t+\frac{7}{10})^2+\frac{1}{5}}\)

\(\geq \sqrt{\frac{1}{5}}\) khi và chỉ khi \(t+\frac{7}{10}=0\Leftrightarrow t=-\frac{7}{10}\)

Vậy $AM$ ngắn nhất khi \(t=-\frac{7}{10}\Rightarrow M=(\frac{12}{5}, \frac{-24}{5})\)

P/s: Mình không hiểu đề bài cho dữ kiện B, C làm gì? k là số nào?

10 tháng 5 2018

vì bài có câu a,b,c,d mà mấy câu đó mình biết làm rồi, còn câu này mình k chắc chắn lắm nên đăng lên. Cảm ơn bạn nha.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

20 tháng 6 2020

M \(\varepsilon\Delta\)=> M ( 1+ t; 2 + t)

MA2 = (t + 2)2 + t2 = 2 t2 + 4t + 4

MB2 = (t - 2)2 + (t + 1)2 = 2t2 - 2t + 5

MA2 +MB2 = 2t2 + 4t + 4 + 2t2 - 2t + 5 = 4t2 + 2t + 9 = 4t2 + 2.2t.1/2 + 1/4 + 35/4

= ( 2t + 1/2 )2 + 35/4 >= 35/4

vậy min của MA2 + MB2 = 35/4 <=> t = -1/4 => M (3/4 ; 7/4)

#mã mã#