Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm B đối xứng với A qua gốc tọa độ nên tọa độ của B là (2; -1)
Tọa độ của C là (x; 2). Ta có: = (-2 - x; -1)
= (-2 - x; -3)
Tam giác ABC vuông tại C => ⊥ => . = 0
=> (-2 - x)(2 - x) + (-1)(-3) = 0
=> -4 + x2+ 3 = 0
=> x2 = 1 => x= 1 hoặc x= -1
Ta được hai điểm C1(1; 2); C2(-1; 2)
\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).
D G F C N E O M B H K J I A
Gọi G là điểm đối xứng của M qua O \(\Rightarrow G=\left(1;-3\right)\in CD\)
Gọi I là điểm đối xứng của M qua O \(\Rightarrow I=\left(-1;5\right)\in AD\)
Do M nằm trên đoạn AB nên \(\overrightarrow{AM}=-3\overrightarrow{BM}\)
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x-2;y-1\right)\\\overrightarrow{BM}=\left(x-6;y-5\right)\end{matrix}\right.\)
\(\overrightarrow{AM}=-3\overrightarrow{BM}\Leftrightarrow\left\{{}\begin{matrix}x-2=-3\left(x-6\right)\\y-1=-3\left(y-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=4\end{matrix}\right.\) \(\Rightarrow M=\left(5;4\right)\)