K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

ve hinh thang vuong ABED co AD//BC ; va ED vuong goc voi BC keo dai ;
E thuoc BC keo dai(hinh chieu cua BC tren mat dat)
.D la diem duoi mat dat cua A AD=7m; BC=5m
Cac goc 40 ; 50 do la giua AC ; AB voi phuong nam ngang .
Ta tinh duoc DE theo BC : DE =BC/(tan50-tan40)
=> Bc da biet tan ta tra duoc .Con CE la chieu cao cua nha :
Vay : CE=AD+DE*tan40= 7+5*tan40/(tan50-tan40)

24 tháng 9 2023

Tham khảo:

a)

 

Gọi H là hình chiếu của A lên đường thẳng BC.

Ta có: \(\widehat {HAB} = {50^o}\); \(\widehat {HAC} = {40^o}\)

\( \Rightarrow \widehat {BAC} = {50^o} - {40^o} = {10^o}\) (1)

Xét tam giác ABH, vuông tại H ta có:

\(\widehat H = {90^o};\;\widehat {BAH} = {50^o}.\)

\( \Rightarrow \widehat {HBA} = {180^o} - {90^o} - {50^o} = {40^o}\) hay \(\widehat {CBA} = {40^o}\). (2)

Từ (1) và (2), suy ra: \(\widehat {BCA} = {180^o} - {40^o} - {10^o} = {130^o}.\)

Vậy ba góc của tam giác ABC lần lượt là: \(\widehat A = {10^o};\;\widehat B = {40^o};\;\widehat C = {130^o}\).

b)

Áp dụng định lý sin cho tam giác ABC, ta được:

 \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\) \( \Rightarrow AB = \frac{{BC.\sin C}}{{\sin A}}\)

Mà: \(BC = 5\;(m);\;\;\widehat C = {130^o};\;\widehat A = {10^o}\)

\( \Rightarrow AB = \frac{{5.\sin {{130}^o}}}{{\sin {{10}^o}}} \approx 22\;(m)\)

Xét tam giác ABH, vuông tại H ta có:

\(\sin \widehat {BAH} = \frac{{BH}}{{AB}}\)\( \Rightarrow BH = AB.\,\,\sin \widehat {BAH}\)

Mà: \(AB \approx 22\;(m);\;\;\widehat {BAH} = {50^o}\)

\( \Rightarrow BH \approx 22.\sin {50^o} \approx 16,85\;(m)\)

Vậy chiều cao của tòa nhà là: \(BH-{\rm{ }}BC + 7 = 16,85-5 + 7 = 18,85{\rm{ }}\left( m \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi A là vị trí đứng của Nam, B là điểm cao nhất của cây, C là vị trí gốc cây.

Gọi H là hình chiếu của A trên BC. Ta có hình vẽ:

TH1: Cây cao hơn tòa nhà

Ta có: \(\tan {24^ \circ } = \frac{{BH}}{{AH}} \Rightarrow BH = 30.\tan {24^ \circ } \approx 13,357\)

\( \Rightarrow BC = BH + HC \approx 13,357 + 1,5 + 18,5 = 33,357(m)\)

TH2: Cây thấp hơn tòa nhà

Ta có: \(\tan {24^ \circ } = \frac{{BH}}{{AH}} \Rightarrow BH = 30.\tan {24^ \circ } \approx 13,357\)

\( \Rightarrow BC = HC -HB  \approx  1,5 + 18,5 - 13,357= 6,643(m)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Gọi các điểm:

O là vị trí của chiếc diều.

H là hình chiếu vuông góc của chiếc diều trên mặt đất.

C, D lần lượt là hình chiếu vuông góc của A, B trên OH.

 

Đặt OC = x, suy ra OH = x + 20 + 1,5 =x + 21,5.

Xét tam giác OAC, ta có: \(\tan \alpha  = \frac{{OC}}{{AC}} \Rightarrow AC = \frac{{OC}}{{\tan \alpha }} = \frac{x}{{\tan {{35}^o}}}\)

Xét tam giác OBD, ta có: \(\tan \beta  = \frac{{OD}}{{BD}} \Rightarrow BD = \frac{{OD}}{{\tan \beta }} = \frac{{x + 20}}{{\tan {{75}^o}}}\)

Mà:\(AC = BD\)\( \Rightarrow \frac{x}{{\tan {{35}^o}}} = \frac{{x + 20}}{{\tan {{75}^o}}}\)

\(\begin{array}{l} \Leftrightarrow x.\tan {75^o} = \left( {x + 20} \right).\tan {35^o}\\ \Leftrightarrow x = \frac{{20.\tan {{35}^o}}}{{\tan {{75}^o} - \tan {{35}^o}}} \approx 4,6\end{array}\)

Suy ra OH = 26,1.

Vậy chiếc diều bay cao 26,1 m so với mặt đất.

27 tháng 10 2023

loading...

Kẻ AO vuông góc với BC tại O

=>OC là độ cao của ngọn đồi

\(\widehat{ACO}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+65^0=180^0\)

=>\(\widehat{ACB}=115^0\)

Xét ΔACB có \(\widehat{ACO}\) là góc ngoài tại C

nên \(\widehat{ACO}=\widehat{CAB}+\widehat{CBA}\)

=>\(\widehat{CAB}+40^0=65^0\)

=>\(\widehat{CAB}=25^0\)

Xét ΔCAB có

\(\dfrac{BA}{sinACB}=\dfrac{BC}{sinBAC}\)

=>\(\dfrac{BA}{sin115}=\dfrac{130}{sin25}\)

=>\(BA=\dfrac{130}{sin25}\cdot sin115\simeq278,79\left(m\right)\)

Xét ΔBOA vuông tại O có \(cosABO=\dfrac{BO}{BA}\)

=>\(\dfrac{BO}{278.79}=cos40\)

=>\(BO=278,79\cdot cos40\simeq213,57\left(m\right)\)

BO=BC+CO

=>CO+130=213,57

=>CO=83,57(m)

Vậy: Độ cao của ngọn đồi là 83,57 mét

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi các điểm A, B, C, H như hình trên.

Xét tam giác ABH ta có:

\(AH = 352,\;\widehat {BAH} = {62^ \circ }\)

Mà \(\cos \widehat {BAH} = \frac{{AH}}{{AB}} \Rightarrow AB = 352 : \cos {62^ \circ } \approx 749,78\)

Tương tự, ta có: \(\cos \widehat {CAH} = \frac{{AH}}{{AC}} \Rightarrow AC = 352:\cos {54^ \circ } \approx 598,86\)

Áp dụng định lí cosin cho tam giác ABC, ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {749,78^2} + {598,86^2} - 2.749,78.598,86.\cos {43^ \circ }\\ \Rightarrow BC \approx 513,84\end{array}\)

Vậy khoảng cách giữa hai cột mốc này là 513,84 m.

12 tháng 6 2018

Đáp án D

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Tam giác ABC vuông tại B nên ta có: \(\tan C = \frac{{AB}}{{CB}} \Leftrightarrow AB = \tan {32^ \circ }.(1 + x)\)

Tam giác ADB vuông tại B nên ta có: \(\tan D = \frac{{AB}}{{DB}} \Leftrightarrow AB = \tan {40^ \circ }.x\)

\(\begin{array}{l} \Rightarrow \tan {32^ \circ }.(1 + x) = \tan {40^ \circ }.x\\ \Leftrightarrow x.(\tan {40^ \circ } - \tan {32^ \circ }) = \tan {32^ \circ }\\ \Leftrightarrow x = \frac{{\tan {{32}^ \circ }}}{{\tan {{40}^ \circ } - \tan {{32}^ \circ }}}\\ \Leftrightarrow x \approx 2,9\;(km)\end{array}\)

\( \Rightarrow AB \approx \tan {40^ \circ }.2,92 \approx 2,45\;(km)\)

Vậy chiều cao của ngọn núi là 2,45 km.