Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Link đây bạn xem thử
https://www.google.com/search?sxsrf=ALeKk000ftx557H7QV3mBjlHBDDRymSGFQ%3A1586183472602&ei=MD2LXoS4JM3EmAXR5YT4Dg&q=Cho+ba+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1%2C+y+%3D+x+%2B+1+v%C3%A0+y+%3D+-1.+V%E1%BA%BD+ba+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+%C4%91%C3%A3+cho+tr%C3%AAn+c%C3%B9ng+m%E1%BB%99t+h%E1%BB%87+tr%E1%BB%A5c+t%E1%BB%8Da+%C4%91%E1%BB%99+Oxy.+G%E1%BB%8Di+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1+v%C3%A0+y+%3D+x+%2B+1+l%C3%A0+A%2C+giao+%C4%91i%E1%BB%83m+c%E1%BB%A7a+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-1+v%E1%BB%9Bi+hai+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+y+%3D+-x+%2B+1+v%C3%A0+y+%3D+x+%2B+1+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+B+v%C3%A0+C.+T%C3%ACm+t%E1%BB%8Da+%C4%91%E1%BB%99+c%C3%A1c+%C4%91i%E1%BB%83m+A%2C+B%2C+C.+Tam+gi%C3%A1c+ABC+l%C3%A0+tam+gi%C3%A1c+g%C3%AC%3F+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+tam+gi%C3%A1c+ABC
Học tốt
b: Tọa độ điểm A là:
\(\left\{{}\begin{matrix}-x+1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Tọa độ điểm B là:
\(\left\{{}\begin{matrix}-x+1=-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Tọa độ điểm C là:
\(\left\{{}\begin{matrix}x+1=-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
Vậy: A(0;1) B(2;-1); C(-2;-1)
c: \(\overrightarrow{AB}=\left(2;-2\right)\)
\(\overrightarrow{AC}=\left(-2;-2\right)\)
Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)
nên ΔABC vuông tại A
Gọi các điểm thỏa mãn điều kiện có tọa độ là \(\left(a;0\right)\)
Khi đó hệ sau có nghiệm nguyên:\(\hept{\begin{cases}a-2y=3\\a-3y=2\\x-5y=-7\end{cases}\Rightarrow\frac{a-3}{2};\frac{a-2}{3};\frac{a+7}{5}}\) nguyên.
TH1: \(a\ge0.\)
\(\frac{a-3}{2}\in Z\) nên a lẻ; \(\frac{a+7}{5}\in Z\Rightarrow\) a chia 5 dư 3. Kết hợp hai điều kiện trên thì a có tận cùng là 3.
Khi đó a - 2 có tận cùng là 1. Vậy để \(\frac{a-2}{3}\in Z\) thì a - 2 = 34k \(\left(k\in N;k\ge1\right)\)
Vậy a = 2 +34k \(\left(k\in N;k\ge1\right)\)
TH2: a < 0
\(\frac{a-3}{2}\in Z\Rightarrow\)- a là số tự nhiên lẻ. \(\frac{a+7}{5}\in Z\Rightarrow\) -a chia 5 dư 2. Vậy -a có tận cùng là 7, vậy a có tận cùng là 7.
Vậy thì a - 2 có tận cùng là 9. Vậy a - 2 = -34k+2 \(\left(k\in N;k\ge0\right)\)
Hay a = 2 - 34k+2 \(\left(k\in N;k\ge0\right)\)
Tóm lại các điểm thỏa mãn điều kiện của đề bài sẽ có tọa độ là \(\left(2+3^{4k};0\right)\) với \(\left(k\in N;k\ge1\right)\) hoặc \(\left(2-3^{4k+2};0\right)\) với \(\left(k\in N;k\ge0\right)\)