Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{10}-1\right)\left(\frac{1}{11}-1\right)\left(\frac{1}{12}-1\right)...\left(\frac{1}{100}-1\right)\)
\(-A=\left(1-\frac{1}{10}\right)\left(1-\frac{1}{11}\right)\left(1-\frac{1}{12}\right)...\left(1-\frac{1}{100}\right)\)
\(-A=\frac{9}{10}\cdot\frac{10}{11}\cdot\frac{11}{12}\cdot...\cdot\frac{99}{100}\)
\(-a=\frac{9}{100}\)
\(A=-\frac{9}{100}\)
Bài 1.
Ta có: \(\frac{a}{b}+\frac{-a}{b+1}=\frac{a}{b}-\frac{a}{b+1}=a\left(\frac{1}{b}-\frac{1}{b+1}\right)=a\left(\frac{b+1-b}{b\left(b+1\right)}\right)=a\left(\frac{1}{b\left(b+1\right)}\right)=\frac{a}{b\left(b+1\right)}\)
=> A là đáp án đúng
Bài 2. Ta có:
B = 4x - 4y + 5xy
B= 4x - 4y + 4xy + xy
B = 4(x - y + xy) + xy
B = 4.(5/12 - 1/3) - 1/3
B = 4.1/12 - 1/3
B = 1/3 - 1/3 = 0
Áp dụng t/c dãy tỉ số = nhau
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)
Tương tự \(b+c=2a;;c+a=2b\)
\(\Rightarrow D=\left(\frac{a+b}{a}\right)\left(\frac{b+c}{b}\right)\left(\frac{c+a}{c}\right)=\left(\frac{2c}{a}\right)\left(\frac{2a}{b}\right)\left(\frac{2b}{c}\right)=8\)
Theo đề ta có :
\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{a+c-b}{b}+2\)
\(\Rightarrow\frac{a+b-c+2c}{c}=\frac{b+c-a+2a}{a}=\frac{a+c-b+2b}{b}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow\left(a+b+c\right).\frac{1}{c}=\left(a+b+c\right)\frac{1}{c}=\left(a+b+c\right)\frac{1}{b}\)
(vì \(a\ne b\ne c\ne0\) \(\frac{\Rightarrow1}{a}\ne\frac{1}{b}\ne\frac{1}{c}\ne0\) \(\Rightarrow a+b+c=0\))
* a+b+c=0
=>a+b=-c ; b+c=-a ; a+c =-b
\(D=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)
\(=\frac{a+b}{a}.\frac{b+c}{b}.\frac{a+c}{c}=\frac{-c.-a.-b}{a.b.c}=\frac{-1.\left(a.b.c\right)}{a.b.c}=-1\)
Vậy : D=-1
$\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}=\dfrac{c+d+a-b}{b}=\dfrac{d+a+b-c}{c}$
Cộng 2 vào mỗi đẳng thức ta có:\(\begin{align} & 2+\dfrac{a+b+c-d}{d}=\dfrac{b+c+d-a}{a}+2=\dfrac{c+d+a-b}{b}+2=\dfrac{d+a+b-c}{c}+2 \\ & \Leftrightarrow \dfrac{a+b+c+d}{d}=\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}\Rightarrow a=b=c=d \\ \end{align}\)
Thay vào P ta được: $P=\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)\left( 1+2 \right)={{3}^{4}}=81$
Đặt \(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{d}+1\right)\left(\frac{d}{a}+1\right)\)
\(\frac{-a+b+c+d}{a}=\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)( tc dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}-a+b+c+d=2a\\a-b+c+d=2b\\a+b-c+d=2c\end{cases}}\)và \(a+b+c-d=2d\)
\(\Rightarrow\hept{\begin{cases}a+b+c+d=4a\\a+b+c+d=4b\\a+b+c+d=4c\end{cases}}\)và \(a+b+c+d=4d\)
\(\Rightarrow4a=4b=4c=4d\)
\(\Rightarrow a=b=c=d\)thay vào bt A ta được:
\(A=2.2.2.2=16\)
P/s: Bài toán này khá hay đó !!
Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)
Mà : \(a,b,c>0\)
\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)
+) Xét : \(a^2c+a^2b=b^2c+ab^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
+) Xét \(b^2c+ab^2=c^2b+c^2a\)
\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)
\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)
\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)
Theo đề ra\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
Mà: a + b + c khác 0 => a = b = c
=> P = (1 + 1)(1 + 1)(1 + 1) = 2 . 2 . 2 = 8
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Leftrightarrow\)\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Leftrightarrow\)\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
+) Nếu \(a+b+c=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow\)\(P=\frac{-c}{a}.\frac{-a}{b}.\frac{-b}{c}=\frac{-abc}{abc}=-1\)
+) Nếu \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{3\left(a+b+c\right)}{a+b+c}=3\)
Suy ra :
\(\frac{a+b+c}{c}=3\)\(\Leftrightarrow\)\(a+b=2c\)
\(\frac{a+b+c}{a}=3\)\(\Leftrightarrow\)\(b+c=2a\)
\(\frac{a+b+c}{b}=3\)\(\Leftrightarrow\)\(c+a=2b\)
\(\Rightarrow\)\(P=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=\frac{8abc}{abc}=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
ta có: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}.\)\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\end{cases}\Rightarrow\hept{\begin{cases}a+b-c=c\\b+c-a=a\end{cases}}}\) => a+ c = a +b - c + b+c-a => a + c = 2b
tương tự như trên ta có: a + b = 2c; b + c = 2a
=> a=b=c
\(\Rightarrow P=\left(1+\frac{b}{a}\right).\left(1+\frac{c}{b}\right).\left(1+\frac{a}{c}\right)=\left(1+\frac{a}{a}\right).\left(1+\frac{c}{c}\right).\left(1+\frac{a}{a}\right)\)\(=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\) ( a,b,c khác 0 )