Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Điện trở tương đương:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=\dfrac{16}{5}\Omega=3,2\Omega\)
b)\(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=2,4V\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75A\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2A\)
\(I_3=I_m-I_1-I_2=0,15A\)
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=3,2\left(\Omega\right)\)
\(U=U_1=U_2=U_3=2,4V\)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I_3=\dfrac{U_3}{R_3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
1. bạn tự vẽ sơ đồ mạch điện nhé!
2.
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4\left(V\right)\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I1=\dfrac{U1}{R1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I2=\dfrac{U2}{R2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I3=\dfrac{U3}{R3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
Vì R 3 song song với R 1 và R 2 nên:
U = U 1 = U 2 = U 3 = 4,8V
I = I 1 + I 2 + I 3 → I 3 = I - I 1 - I 2 = 1,5 – 0,8 – 0,4 = 0,3A
Điện trở R 3 bằng:
Điện trở tương đương của toàn mạch là:
1. a. Theo ht 4' trg đm //, ta có: Rtđ= (R1.R2)/(R1+R2)= (3.6)/(3+6)=2 ôm
b.Theo ĐL ôm, ta có: I= U/Rtđ=24/2=12 A
I1=U/R1=24/3=8 ôm
I2=U/R2=24/6=4 ôm
2. a. Theo ht 4' trg đm //, ta có: Rtđ=(R1.R2.R3)/(R1+R2+R3)= (6.12.4)/(6+12+4)=13,09 ôm
b. Áp dụng ĐL Ôm, ta có: U=I.R=3.13,09=39,27 V
c. Theo ĐL Ôm, ta có:
I1=U/R1=39,27/6=6.545 A
I2=U/R2=39,27/12=3,2725 A
I3=U/R3=39,27/4=9.8175 A
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4V\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=U:R=2,4:3,2=0,75A\\I1=U1:R1=2,4:6=0,4A\\I2=U2:R2=2,4:12=0,2A\\I3=U3:R3=2,4:16=0,15A\end{matrix}\right.\)
a)\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=\dfrac{16}{5}\Omega=3,2\Omega\)
b)\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75A\)
\(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=2,4V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2A\)
\(I_3=I-I_1-I_2=0,75-0,4-0,2=0,15A\)