Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)
\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)
\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)
\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)
\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)
\(3^x+\frac{4}{9}=9+\frac{4}{9}\)
\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)
\(3^x=9\)
\(3^x=3^2\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)
\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)
\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)
\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)
\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)
\(=3,75.\left(7,2+2,8\right)\)
\(=3,75.10=37,5\)
\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)
\(=\frac{-3}{7}+-\frac{4}{7}=-1\)
\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)
\(=9-\frac{1}{8}.8+0,2\)
\(=9-1+0,2=8+0,2=8,2\)
a) \(\left|\sqrt{2}-x\right|=\sqrt{2}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{2}-x=\sqrt{2}\\\sqrt{2}-x=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\sqrt{2}\end{cases}}}\)
b) \(\left|x+1\right|=\sqrt{3}+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{3}+2\\x+1=-\sqrt{3}-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}+1\\x=-\sqrt{3}-3\end{cases}}\)
:v .Sai mẹ r. *Chứng lại (mong rằng lầng này không còn lỗi sai).Sau đây là cách chứng minh của lớp 7
Do \(0\le x\le y\le z\le1\) nên \(xy< xz< yz\Leftrightarrow xy+1< xz+1< yz+1\)
Do đó; \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\) (1)
Ta cần chứng minh: \(\frac{x+y+z}{1+xy}\le\frac{1+xy+1}{1+xy}\Leftrightarrow x+y+z\le1+xy+1\)(đang tìm cách chứng minh.Sẽ đăng lên sau)
Suy ra: \(\frac{x+y+z}{xy+1}\le\frac{1+xy+1}{xy+1}=1+\frac{1}{xy+1}\le1+1=2\) ( do \(xy+1\ge1\Rightarrow\frac{1}{xy+1}\le1\))(2)
Từ (1) và (2) suy ra đpcm
mik đành thêm vào bài(gì mà đăng lên sau nhé)
Hiển nhiên \(0\le x\le y\le z\le1\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\y-1\ge0\end{cases}}\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow xy+1-x-y\ge0\)
\(\Rightarrow xy+1\ge x+y\)
Do \(z\le1\)\(\Rightarrow\frac{x+y+z}{xy+1}\le\frac{xy+1+1}{xy+1}\le\frac{xy+2+xy}{xy+1}\le\frac{2\left(xy+1\right)}{xy+1}\le2\)
Nhờ bạn giải hộ mik giấu bằng xảy ra khi nào
Bai 1: Cho tam giac ABC vuong tai A. Tia phan giac cua goc B cat AC o D. Ke DE vuong goc voi BC .CMR: AB bang BE
Bai 2: Cho tam giac ABC, D la trung diem cua AB. Duong thang qua D va song2 voi BC cat AC o E, duong thang qua E va song2 voi AB cat BC o F.CMR:
a, AD bang EF
b, \(\Delta ADE=\Delta EFC\)
c,\(AE=EC\)
Bai 3:* Cho tam giac ABC ,D la trung diem cua AB ,E la trung diem cua AC .Ve diem F : E la trung diem cua DF.CMR:
a,\(DB=CF\)
b,\(\Delta BDC=\Delta FCD\)
c,\(DE//BC,DE=\frac{1}{2}BC\)
HTDT
a,.\(\frac{1}{2}+\frac{2}{3}.\sqrt{9}\)
=\(\frac{1}{2}+\frac{2}{3}.3\)
=\(\frac{1}{2}+2\)
=\(\frac{5}{2}\)
b,\(x+\frac{2}{5}=1\)
\(x=1-\frac{2}{5}\)
X =\(\frac{3}{5}\)
a, \(\frac{1}{2}+\frac{2}{3}\cdot\sqrt{9}\)
\(\Leftrightarrow\frac{1}{2}+\frac{2}{3}\cdot3\)
\(=\frac{1}{2}+2\)
\(=\frac{5}{2}\)
b, \(x+\frac{2}{5}=1\)
\(x=1+\left(\frac{-2}{5}\right)\)
\(x=\frac{3}{5}\)
c, Ta có : \(A=\left|x+\frac{1}{2}\right|\ge0\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi : \(\left|x+\frac{1}{2}\right|=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(A_{min}=0\Leftrightarrow x=-\frac{1}{2}\)
d, \(2x-5=0\Leftrightarrow2x=0+5\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\)
Vậy tập hợp các nghiệm của phương trình \(2x-5=0\) là \(\left\{\frac{5}{2}\right\}\).
\(\sqrt{256}=16\)
\(\sqrt{289}=17\)
\(3\sqrt{9}=3.3=9\)
bạn có thể giải cho mình được không