Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- CM \(\frac{a}{b}< \frac{a+c}{b+d}\)
Do \(\frac{a}{b}< \frac{c}{d}\Rightarrow a.d< b.c\)
=> a.d + a.b < b.c + a.b
=> a.(b + d) < b.(a + c)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)
- CM \(\frac{a+c}{b+d}< \frac{c}{d}\)
Do \(\frac{a}{b}< \frac{c}{d}\Rightarrow a.d< b.c\)
=> a.d + c.d < b.c + c.d
=> d.(a + c) < c.(b + d)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
xin lỗi, mình nhầm chỗ này, cho mình sửa lại nha
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Suy ra:
+) \(ad+ab< bc+ab\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
+) \(ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\frac{a+b}{b+d}< \frac{c}{d}\) (2)
(1),(2) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
Chúc bạn học tốt
(hồi nãy mình nhầm chút xíu)
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{a.a}{c.c}=\frac{b.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
a) \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\) (đpcm)
b) \(\frac{b^2-a^2}{a^2+c^2}+1=\frac{b^2-a^2+a^2+c^2}{a^2+c^2}=\frac{b^2+c^2}{a^2+c^2}=\frac{b^2+ab}{a^2+ab}=\frac{b\left(a+b\right)}{a\left(a+b\right)}=\frac{b}{a}=\frac{b-a}{a}+1\)
\(\Rightarrow\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\) (đpcm)
a) Ta có :\(\frac{a}{c}=\frac{c}{b}\)
=> ab=c\(^2\)
Khi đó: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)
1. Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk.\)
Do đó : \(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}\frac{k}{k-1}\) (1).
và \(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2).
Từ (1) và (2) ta suy ra : \(\frac{a}{a-b}=\frac{c}{c-d}\) (đpcm).
2. a b c B A 1 2 1 2
Ta có: góc A1 + B2 = 180\(^o\) (kề bù). (1)
và góc A2 + B2 = 180\(^0\) (2 góc trong cùng phía bù nhau). (2).
Từ (1) và (2) ta suy ra : A1 = B2.
Vậy 2 góc so le trong thì bằng nhau khi 1 đường thẳng cắt 2 đường thẳng song song. (đpcm).
Câu 2:
Khi một đường thẳng cắt 2 đường thẳng, khi đó tạo thành 2 cặp góc so le trong bằng nhau, cái này nó là công thức của nó rồi thì chứng minh cái j hả Nhi LInh ???