Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\)<=>\(\frac{a}{c}=\frac{b}{d}\)
áp dụng t/c dãy tỉ số = nhau :
\(\frac{a}{c}=\frac{b}{d}\)\(=\frac{a-b}{c-d}\) <=> \(\frac{a}{c}\)\(=\frac{a-b}{c-d}\)<=> \(\frac{a}{a-b}=\frac{c}{c-d}\)
mấy bài kia cũng tương tự em ạ !
gợi ý: đặt chung cho cả 4 phần a/b = c/d = k( k khác 0)
=> a=bk; c=dk
rồi thay vào các biểu thức
Tạm thời giải phần a đã nhé -_-
a, Từ a/b = c/d => a/c=b/d
Đặt a/c=b/d=k thì a=ck, b=dk
Xét : 4a-3b/4a+3b=4ck-3dk/4ck+3dk=k.(4c-3d)/k.(4c+3d)=4c-3d/4c+3d
=> 4a-3b/4a+3b=4c-3d/4c+3d => 4a-3b/4c-3d=4a+3b/4c+3d
Nhìn trên máy khó lắm viết lại theo lời giải ra nháp trc' cho dễ nhìn nhé @@
\(a,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a-3b}{4c-3d}\)\(\left(1\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{3b}{3d}=\frac{4a+3b}{4a+3d}\)\(\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{4a-3b}{4c-3d}=\frac{4a+3b}{4c+3d}\left(đpcm\right)\)
\(b\)Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow a=ck;b=dk\)
\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{\left(ck\right)^2-\left(dk\right)^2}{c^2-d^2}=\frac{c^2k^2-d^2k^2}{c^2-d^2}=\frac{k^2\left(c^2-d^2\right)}{c^2-d^2}=k^2\)\(\left(3\right)\)
Mà \(\frac{ab}{cd}=\frac{ck.dk}{cd}=k^2\)\(\left(4\right)\)
Từ ( 3 ) và ( 4 ) \(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(đpcm\right)\)
\(c,\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\left(5\right)\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\left(6\right)\)
TỪ ( 5 ) và ( 6 ) \(\Rightarrow\frac{a-b}{c-d}=\frac{2a+5b}{2c+5d}\left(đpcm\right)\)
a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)
\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)
Chúc bạn học tốt!
ta có \(\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab\)
nên \(\frac{b^2-a^2}{a^2+c^2}=\frac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\frac{\left(b-a\right)\left(a+b\right)}{a\left(a+b\right)}=\frac{b-a}{a}\left(ĐPCM\right)\)
CÓ : \(\frac{a}{c}=\frac{c}{b}\)=>\(ab=c^2\)
THẾ VÀO =>\(\frac{a^2+c^2}{b^2+c^2}\)= \(\frac{a^2+ab}{b^2+ab}\)=\(\frac{a\left(a+b\right)}{b\left(a+b\right)}\)=\(\frac{a}{b}\)
Câu 1:
Ta có\(\frac{a}{c}=\frac{c}{b}=>ab=c^2\)
=>\(\frac{a^2+c^2}{c^2+b^2}=\frac{a^2+ab}{ab+b^2}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đccm\right)\)
Câu 2:
Theo bài ra, ta có:\(\frac{a}{c}=\frac{c}{b}\)
=>\(ab=c^2\)
Ta có: \(\frac{b-a}{a}=\frac{\left(b-a\right).\left(a+b\right)}{a.\left(a+b\right)}=\frac{b.\left(a+b\right)-a.\left(a+b\right)}{a^2+ab}\)
\(\frac{ab+b^2-\left(a^2+ab\right)}{a^2+c^2}=\frac{ab+b^2-a^2-ab}{a^2+c^2}=\frac{b^2-a^2}{a^2+c^2}\)
=>\(\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\left(đpcm\right)\)
MIK CHẮC CHẮN BÀI NÀY LÀ HOÀN TOÀN CHÍNH XÁC LUN!!!!!!!!
k ĐÚNG cho mik nha, rùi mai mốt có j thì giúp đỡ nhau nhiều.
Từ a/b = b/c
Suy ra : bb = ac
b2 = ac
vậy : a2 + b2 / b2+ c2 = a2 + ac / ac + c2 = a(a+c) / c(a+c) = a/c
Vậy : Ta có được cái cần chứng minh :))
Lớp mình vừa kiểm tra 15' bài này xong .
a) đặt a/b = c/d = k suy ra a = bk ; c = dk
a/a - b = bk/bk - b = k/k - 1 (1)
c/c - d = dk/dk - d = k/k - 1 (2)
từ (1)(2) suy ra a/a - b = c/c - d
b,c tương tự đặt k còn lại bạn tự lm nha!!!
a) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (dãy tỉ số bằng nhau)
Ta có: \(\frac{a}{c}=\frac{a-b}{c-d}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (đpcm) (tính chất tỉ lệ thức)
b)Bạn tham khảo bài mình làm tại đây nhé!
c) \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\) (1) .Mặt khác,theo t/c dãy tỉ số bằng nhau: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)
Từ (1) và (2),suy ra đpcm: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Từ \(\frac{a+b}{a-b}=\frac{b+c}{b-c}\Rightarrow\left(a+b\right).\left(b-c\right)=\left(b+c\right).\left(a-b\right)\)
\(\Rightarrow ab-ac+b^2-bc=ab-b^2+ac-bc\)
\(\Rightarrow2b^2=2ac\Rightarrow b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
Từ \(\frac{a+c}{a-c}=\frac{b+d}{b-d}\Rightarrow\left(a+c\right).\left(b-d\right)=\left(b+d\right).\left(a-c\right)\)
\(\Rightarrow ab-ad+bc-cd=ab-bc+ad-cd\)
\(\Rightarrow2ad=2bc\Rightarrow ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{d^2}=\frac{a^2+b^2-c^2}{b^2+c^2-d^2}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)
Suy ra điều cần chứng minh
Chúc em học tôt
\(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
a) \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\) (đpcm)
b) \(\frac{b^2-a^2}{a^2+c^2}+1=\frac{b^2-a^2+a^2+c^2}{a^2+c^2}=\frac{b^2+c^2}{a^2+c^2}=\frac{b^2+ab}{a^2+ab}=\frac{b\left(a+b\right)}{a\left(a+b\right)}=\frac{b}{a}=\frac{b-a}{a}+1\)
\(\Rightarrow\frac{b^2-a^2}{a^2+c^2}=\frac{b-a}{a}\) (đpcm)
a) Ta có :\(\frac{a}{c}=\frac{c}{b}\)
=> ab=c\(^2\)
Khi đó: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)