K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

`A=\(\frac{1}{2}-1)(\dfrac{1}{3}-1).....(\frac{1}{2021}-1)`

`=\frac{-1}{2}.\frac{-2}{3}.....\frac{-2020}{2021}`
`=(-1xx(-2)xx...xx(-2020))/(2xx3xx....xx2021)`
`=(1xx2xx..xx2020)/(2xx3xx...xx2021)`(do `1->2020` có 2020 số)

`=\frac{1}{2021}`

5 tháng 6 2021

Cái cuối có -1 ko

11 tháng 3 2017

a)Ta thấy:

\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)

\(=\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrowđpcm\)

b)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)

\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)

\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)

c)Ta thấy:

\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)

11 tháng 3 2017

a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)

Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)

\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)

\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)

14 tháng 3 2017

Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)

\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)

\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)

\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)

Vậy \(A=\dfrac{-5}{12}.\)

14 tháng 3 2017

\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)

\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)

\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)

\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)

\(C=2-\dfrac{1}{2^{2016}}\)

20 tháng 7 2017

a.\(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)

\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}\)

\(=\dfrac{3.4.5...100}{2.3.4...99}\)

\(=\dfrac{100}{2}=50\)

20 tháng 7 2017

a,

\(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\\ =\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{100}{99}\\ =\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot99}\\ =\dfrac{100}{2}=50\)

b,

\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\\ =\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-99}{100}\\ =\dfrac{\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-99\right)}{2\cdot3\cdot4\cdot...\cdot100}\\ =\dfrac{\left(-1\right)\left(-1\right)\left(-1\right)\cdot...\left(-1\right)}{100}\left(\text{có }99\text{ số }-1\right)\\ =\dfrac{\left(-1\right)^{99}}{100}\\ =\dfrac{-1}{100}\)

c,

\(C=\dfrac{4}{30}+\dfrac{4}{70}+\dfrac{4}{126}+...+\dfrac{4}{798}\\ =\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{19\cdot21}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ =\dfrac{1}{3}-\dfrac{1}{21}\\ =\dfrac{7}{21}-\dfrac{1}{21}\\ =\dfrac{6}{21}=\dfrac{2}{7}\)

26 tháng 4 2018

\(\left(1+\dfrac{1}{2}\right)+\left(1+\dfrac{1}{2^2}\right)+...+\left(1+\dfrac{1}{2^{50}}\right)\)

= \(\left(1+1+1+...+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)(50 số 1 )

= \(50+\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\right)\)

A =\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{50}}\)

⇒ 2A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\)

⇒ 2A - A =\(1-\dfrac{1}{2^{50}}\)

=50+1-\(\dfrac{1}{2^{50}}\)=51-\(\dfrac{1}{2^{50}}>3\)

18 tháng 6 2018

\(P=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{98}{99}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot98}{2\cdot3\cdot4\cdot...\cdot99}\\ =\dfrac{1}{99}\\ Vậy....\)

12 tháng 6 2017

K chép lại đề, lm luôn nhé:

*\(\Rightarrow\) \(\left(\dfrac{7}{2}+2x\right)\cdot\dfrac{8}{3}=\dfrac{16}{3}\)

\(\Rightarrow\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)

\(\Rightarrow2x=2-\dfrac{7}{2}=-\dfrac{3}{2}\)

\(\Rightarrow x=-\dfrac{3}{4}\)

* \(\Rightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{\dfrac{3}{4}-2}{2}=-\dfrac{5}{8}\)

=> K có gt x nào t/m đề

* Đề sai

* \(\Rightarrow\left[{}\begin{matrix}3x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)

*\(\Rightarrow\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=-\dfrac{21}{4}\)

\(\Rightarrow2x-1=\dfrac{1}{3}:\left(-\dfrac{21}{4}\right)=-\dfrac{4}{63}\)

\(\Rightarrow2x=-\dfrac{4}{63}+1=\dfrac{59}{63}\)

\(\Rightarrow x=\dfrac{59}{63}:2=\dfrac{59}{126}\)

* \(\Rightarrow\left(2x+\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)

\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{3}{5}=\dfrac{3}{5}\\2x+\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=0\Rightarrow x=0\\2x=-\dfrac{6}{5}\Rightarrow x=-\dfrac{3}{5}\end{matrix}\right.\)

* \(\Rightarrow-5x-1-\dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)

\(\Rightarrow-5x-\dfrac{1}{2}x-\dfrac{3}{2}x=-\dfrac{5}{6}+1-\dfrac{1}{3}\)

\(\Rightarrow-7x=-\dfrac{1}{6}\)

\(\Rightarrow x=-\dfrac{1}{6}:7=-\dfrac{1}{42}\)

12 tháng 6 2017

a)\(\left(3\dfrac{1}{2}+2x\right).2\dfrac{2}{3}=5\dfrac{1}{3}\)

\(\left(\dfrac{7}{2}+2x\right).\dfrac{8}{3}=\dfrac{16}{3}\)

\(\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)

\(2x=2-\dfrac{7}{2}=\dfrac{-3}{2}\Rightarrow x=\dfrac{-3}{4}\)

b)\(\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)

\(2.\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2=\dfrac{-1}{4}\)

\(\Rightarrow\left|2x-3\right|=\dfrac{-1}{8}\)

\(\Rightarrow x\in\varnothing\)

c) Đề sai,bạn có viết chữ x đâu,đó là phép tính mà.

d)\(\left(3x-1\right)\left(\dfrac{-1}{2}x+5\right)=0\)

\(\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{-1}{2}x+5=0\Rightarrow x=10\)

e)\(\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)

\(\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=\dfrac{-21}{4}\)

\(2x-1=\dfrac{1}{3}:\dfrac{-21}{4}=\dfrac{-4}{63}\)

\(\Rightarrow2x=\dfrac{59}{63}\Rightarrow x=\dfrac{59}{126}\)

g)\(\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)

\(\left(2x+\dfrac{3}{5}\right)^2=0+\dfrac{9}{25}=\dfrac{9}{25}\)

\(\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2=\left(\dfrac{-3}{5}\right)^2\)

\(th1:x=0\)

\(th2:x=\dfrac{-3}{5}\)

h)\(-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)

\(-5x+-1-\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)

\(\Leftrightarrow-5x+-1+\dfrac{5}{6}-\dfrac{1}{3}=2x\)

\(-5x+\dfrac{-1}{2}=2x\)

\(\dfrac{-1}{2}=2x+5x\)

\(\dfrac{-1}{2}=7x\Rightarrow x=\dfrac{-1}{14}\)