Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{7}{19}x\dfrac{8}{23}+\dfrac{7}{19}x\dfrac{15}{23}+1\dfrac{7}{19}\)
= \(\dfrac{7}{19}x\left(\dfrac{8}{23}+\dfrac{15}{23}\right)+1+\dfrac{7}{19}\)
=\(\dfrac{7}{19}x1+1+\dfrac{7}{19}\)
= \(\dfrac{7}{19}+1+\dfrac{7}{19}=1\dfrac{14}{19}\) = \(\dfrac{33}{19}\)
\(\dfrac{75}{100}+\dfrac{18}{21}+\dfrac{49}{32}+\dfrac{1}{4}+\dfrac{3}{21}-\dfrac{17}{32}\)
= \(\dfrac{3}{4}+\dfrac{6}{7}+\dfrac{49}{32}+\dfrac{1}{4}+\dfrac{1}{7}-\dfrac{17}{32}\)
= \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)+\left(\dfrac{6}{7}+\dfrac{1}{7}\right)+\left(\dfrac{49}{32}-\dfrac{17}{32}\right)\)
= 1 + 1 + 1 = 3
\(\dfrac{8}{9}x\dfrac{15}{16}x\dfrac{24}{25}x\dfrac{35}{36}x\dfrac{48}{49}x\dfrac{63}{64}\)
= \(\dfrac{3}{4}\) *Câu này bạn tự sử dụng gạch nhé!
`1,`
`a,`
`7/19 \times 8/23 + 7/19 \times 15/23 + 1 7/19`
`= 7/19 \times 8/23 + 7/19 \times 15/23 + 1 + 7/19`
`= 7/19 \times (8/23 + 15/23 + 1) + 1`
`= 7/19 \times 2 + 1`
`=14/19 + 1`
`= 33/19`
`b,`
`75/100 + 18/21 + 49/32 + 1/4 + 3/21 - 17/32`
`= 75/100 + (18/21 + 3/21) + (49/32 - 17/32) + 1/4`
`= 0,75 + 1 + 1 + 0,25`
`= (0,75 + 0,25) + 1 + 1`
`= 1+1+1=3`
`c,`
`8/9 \times 15/16 \times 24/25 \times 35/36 \times 48/49 \times 63/64`
`=` \(\dfrac{2\times3}{3\times3}\times\dfrac{3\times5}{4\times4}\times\dfrac{3\times4\times2}{5\times5}\times\dfrac{5\times7}{6\times6}\times\dfrac{6\times8}{7\times7}\times\dfrac{7\times9}{8\times8}\)
`= 3/4` (bạn sử dụng gạch, rút gọn các số là được nhé).
a, thì dễ rồi bạn tự làm nhé
mk làm câu b thôi
b,\(\frac{1}{1x2}\)+ \(\frac{1}{2x3}\)+......+\(\frac{1}{99x100}\)
= 1 - \(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{3}\)+....+\(\frac{1}{99}\)- \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
a) \(M=\frac{2\times2}{1\times5}+\frac{2\times2}{5\times9}+\frac{2\times2}{9\times13}+...+\frac{2\times2}{45\times40}\)
\(M=\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{45\times49}\)
\(M=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\)
\(M=1-\frac{1}{49}\)
\(M=\frac{48}{49}\)
b) \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+5+...+10}\)
= \(\frac{2}{2\times\left(1+2\right)}+\frac{2}{2\times\left(1+2+3\right)}+...+\frac{2}{2\times\left(1+2+3+...+10\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{110}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{10\times11}\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=2\times\frac{9}{22}\)
\(=\frac{9}{11}\)
Mình trả lời câu a nha M= 4/1*5+4/5*9+4/9*13+...+4/45*49 M=1-1/5+1/5-1/9+1/9-1/13+...+1/45-1/49 M=1-1/49=48/49
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2009}\)
\(=\frac{1}{\frac{2\cdot\left(1+2\right)}{2}}+\frac{1}{\frac{3\cdot\left(3+1\right)}{2}}+\frac{1}{\frac{4\cdot\left(4+1\right)}{2}}+...+\frac{1}{\frac{2009\cdot\left(2009+1\right)}{2}}\)
\(=\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{2009\cdot2010}\)
\(=2\cdot\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2009\cdot2010}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2010}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=1-\frac{1}{1005}\)
\(=\frac{1004}{1005}\)
1/1+2=3=1/1+2+2=6=1/1+2+3+4=10+3+6=19+1/1+2+3+4=29+3+6+10+19+2009=2076nếu mình làm sai thì nhớ chỉ dùm
nhớ kết bạn với mình nhé
mk chỉnh lại đề
\(A=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{99}{100}\)
\(=\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.\frac{5^2-1}{5^2}....\frac{10^2-1}{10^2}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}.....\frac{9.11}{10^2}\)
\(=\frac{2.3.4...9}{3.4.5...10}.\frac{4.5.6...11}{3.4.5...10}\)
\(=\frac{2}{10}.\frac{11}{3}=\frac{11}{15}\)