Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/M=2/3.5+2/5.7+2/7.9+.....+2/97.99
M=1/3-1/5+1/5-1/7+..+1/97-1/99
M=1/3-1/99
M=32/99
b)ta có 1/2.3+1/3.4+1/4.5+..+1/2015.2016+1/2016.2017<A
=>1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016+1/2016-1/2017<a
1/2-1/2017<A
2/15/4034<A (1)
Ta có
1/1.2+1/2.3+1/3.4+1/4.5+..+1/2015.2016>A
=>1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+..+1/2015-1/2016>A
1-1/2016
2015/2016>A (2)
Từ (1) và (2)=>A không phải là số tự nhiên(đpcm)
\(M=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+.....+\frac{2}{97}-\frac{2}{99}\)
\(M=\frac{2}{3}-\frac{2}{99}=\frac{64}{99}\)
Lời giải:
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-998}{999}.\frac{-999}{1000}\\
=\frac{(-1)(-2)(-3)...(-998)(-999)}{2.3.4....1000}\\
=-\frac{1.2.3.4....998.999}{2.3.4...1000}\\
=-\frac{1}{1000}\)
Trong $B$ có một thừa số là $1-\frac{7}{7}=0$ nên $B=0$ (do số nào nhân với $0$ cũng sẽ bằng $0$.
----------------------
$C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50^2}$
$=\frac{1.3.2.4.3.5.....49.51}{2^2.3^2.4^2....50^2}$
$=\frac{(1.2.3...49)(3.4.5...51)}{(2.3.4...50)(2.3.4...50)}$
$=\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4....50}$
$=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}$
a) \(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(A=\left(\frac{1}{3}-\frac{1}{203}\right):2=\frac{100}{609}\)
Các ý còn lại cx tách như vật nha
CT chung này \(\frac{x}{n\left(n+x\right)}=\frac{1}{n}-\frac{1}{n+x}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{201.203}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(2A=\frac{1}{3}-\frac{1}{203}=\frac{200}{609}\)
\(A=\frac{100}{609}\)
Tương tự với b thôi.
Bài 2
a) Ta có
S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
S = \(\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Vì \(\dfrac{1}{13}< \dfrac{1}{12}\)
\(\dfrac{1}{14}< \dfrac{1}{12}\)
\(\dfrac{1}{15}< \dfrac{1}{12}\)
=> \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}.3\)
Lại có
\(\dfrac{1}{61}< \dfrac{1}{60}\)
\(\dfrac{1}{62}< \dfrac{1}{60}\)
\(\dfrac{1}{63}< \dfrac{1}{60}\)
=> \(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}.3\)
=> S = \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) < \(\dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)
= \(\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\) = \(\dfrac{1}{2}\)
=> đpcm
Ta có
\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{1}-\dfrac{1}{x+2}=\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{1}-\dfrac{2015}{2016}\)
\(\dfrac{1}{x+2}=\dfrac{1}{2016}\)
2016 = x + 2
x = 2016 - 2
x = 2014
Vậy x = 2014 là giá trị cần tìm
Bài giải
\(B=1\cdot2^2+2\cdot3^2+3\cdot4^2+...+99\cdot100^2\)
\(B=1\cdot2\cdot\left(3-1\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot\left(101-1\right)\)
\(B=1\cdot2\cdot3-1\cdot2+2\cdot3\cdot4-2\cdot3+...+99\cdot100\cdot101-99\cdot100\)
\(B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)-\left(1\cdot2+2\cdot3+...+99\cdot100\right)\)
Đặt \(C=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot101\cdot\left(102-98\right)\)
\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+99\cdot100\cdot101\cdot102-98\cdot99\cdot100\cdot101\)
\(4C=99\cdot100\cdot101\cdot102\)
\(4C=101989800\)
\(C=101989800\text{ : }4\)
\(C=25497450\)
A=(1-1/2^2)(1-1/3^2).....(1-1/10^2)
=(1-1/4)(1-1/9)....(1-1/100)
=3/4.8/9......99/100=1.3.2.4.....9.11/(2.3.....10)^2=1.2.3.....11/(3.....10).10=2.11/10=22/10=11/5
B=1/1.3+1/3.5+1/5.7+1/7.9
= 2.(1/1.3+1/3.5+1/5.7+1/7.9).1/2=(1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9).1/2=(1/1-1/9).1/2=8/9.1/2=4/9
chich de