Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 + 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 + 1/256 - 1/512
= 1 - 1/512
= 511/512
1+2+4+8+......+256+512
Phân tích :
1+1 = 2
2+2 =4
4+4=8
...
256+256 = 512
( Lấy 1 số cộng vs chính nó ! )
Học tốt !
Bài làm
1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512
= ( 2 + 8 ) + ( 4 + 16 ) + ( 128 + 32 ) + ( 64 + 256 ) + ( 512 + 1 )
= 10 + 20 + 160 + 320 + 513
= 1023
Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729
Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
= 1 – 1/2 + 1/2- 1/4 + 1/4 – 1/8 + 1/8 – 1/16 + 1/16 – 1/32 + 1/32 – 1/64 + 1/64 – 1/128 + 1/128 – 1/256 – 1/256 – 1/512
= 1 – 1/512
= 511/512
hok tot
\(\frac{3}{2}+\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\frac{3}{32}+\frac{3}{64}+\frac{3}{128}+\frac{3}{256}+\frac{3}{512}+\frac{3}{1024}\)
=\(3.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}+\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}+\frac{1}{128}-\frac{1}{256}+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\right)\)
=\(3.\left(1-\frac{1}{1024}\right)=3.\left(\frac{1024}{1024}-\frac{1}{1024}\right)=3.\frac{1023}{1024}=\frac{3069}{1024}\)
Chúc em học tốt
\(A=1+\dfrac{1}{2}+1+\dfrac{1}{4}+1+\dfrac{1}{8}+...+1+\dfrac{1}{256}+1+\dfrac{1}{512}=\)
\(=1x\left(\dfrac{512-2}{2}+1\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{...1}{256}+\dfrac{1}{512}\right)=\)
\(256+B\)
\(2B=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}+\dfrac{1}{1024}\)
\(B=2B-B=1+\dfrac{1}{1024}\)
\(\Rightarrow A=265+1+\dfrac{1}{1024}\)