Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
X=2 nhé bạn.....đúng đó, vòng 12 mk 300 mà cx gặp câu này!!! Tick nha
= 1/1 - 1/5 + 1/5 -1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8-1/9 +...+ 1/2004 - 1/2005
= 1/1 - 1/2005
= 2004/2005
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
Lời giải:
$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$
$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$
$x(1-\frac{1}{7})< \frac{13}{7}$
$x.\frac{6}{7}< \frac{13}{7}$
$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$
Vì $x$ là số nguyên nên $x\leq 2$
Vậy $x$ là các số nguyên sao cho $x\leq 2$.
A =
A = \(1-\frac{1}{2018}\)
A = \(\frac{2017}{2018}\)
Có :
2.B = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
2.B = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
2.B = \(1-\frac{1}{2017}\)
2.B = \(\frac{2016}{2017}\)
B = \(\frac{2016}{2017}:2=\frac{1008}{2017}\)
Có :
3.C = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2017.2020}\)
3.C = \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2017}-\frac{1}{2020}\)
3.C = \(\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)
C = \(\frac{2019}{2020}:3=\frac{673}{2020}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{22}{45}\) vậy
\(\frac{11}{45}.x=\frac{22}{45}\)
\(x=\frac{22}{45}\div\frac{11}{45}=2\)
vậy suy ra x =2
mình chắc chắn 100% luôn đó, cái này ở trong violympic toán 7 vòng 12 phải ko
\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)
=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
=>\(S=\frac{4}{9}-\frac{1}{5}\)
=>\(S=\frac{11}{45}\)
lê chí cường dung