K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2015

Tính tổng sao nếu vậy thì 
MÌnh đặt tổng này là A nhé 
A = 3^1+3^2+....+3^2018 
3A = 3^2+3^3+...+3^2019
3A - A = 2A = 3^2019 - 3^1 trên 2 =A
**** nhé ! , Cảm ơn bạn .

19 tháng 9 2019

Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.

BÀi 12:

S=1 + 2 + 22 + `23 +..........+ 22017

2S=2 + 22 + `23 + 24 +..........+22017 + 22018

Trừ đi hai vế ta được:

S=1 + 22018

17 tháng 11 2018

a)

   \(2A=2+2^2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

b)

  Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)

\(3^2D=3^3+3^5+...+3^{101}\)

\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)

\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)

Tương tự \(E=\frac{3^{102}-3^2}{8}\)

Ta có \(D-E=B\)

Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)

Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)

27 tháng 11 2018

c,\(C=1+5^2+5^4+5^6+...+5^{200}\)

\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)

\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)

\(=5^{202}-1\)

\(\Rightarrow C=\frac{5^{202}-1}{24}\)

17 tháng 11 2018

A = 1 + 2 + 22 + ... + 2100

=> 2A = 2 + 22 + 23 + ... + 2100 + 2101

=> 2A - A = ( 2 + 22 + 2+ ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )

=> A = 2101 - 1

17 tháng 11 2018

A = 1 + 2 +22+.....+2100

=>  2A =2  + 22 + 23+...+2100+2101

=> 2A - A = ( 2 + 22+23+.....+2100+2101) - ( 1 + 2 + 22+...+2100)

=> A = 2101 - 1

26 tháng 9 2020

chưa học đến

26 tháng 9 2020

vì lớp 6 mà

12 tháng 12 2018

\(A=1+6+6^2+...+6^{100}\)

\(6A=6+6^2+6^3+...+6^{101}\)

\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)

\(5A=6^{101}-1\)

\(A=\frac{6^{101}-1}{5}\)

Hoàn toàn tương tự với các câu b) c)

12 tháng 12 2018

\(A=1+6+6^2+6^3+...+6^{100}\)

\(6A=6+6^2+6^3+6^4+...+6^{101}\)

\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)

\(5A=6^{101}-1\)

\(A=\frac{6^{101}-1}{5}\)

19 tháng 12 2019

Bài 1: \(35-3.\left|x\right|=5:\left(2^3-4\right)\)

           \(35-3\left|x\right|=5:\left(8-4\right)\)

          \(35-3.\left|x\right|=20\)

                      \(3.\left|x\right|=15\)

                          \(\left|x\right|=5\)

\(\Rightarrow x\in\left\{-5;5\right\}\)

Bài 2:

\(2017-\left(37+2017\right)+\left(-22+37\right)=2017-37-2017+\left(-22\right)+37\)

                                                                                 \(=\left(2017-2017\right)+\left(-37+37\right)+\left(-22\right)\)

                                                                                 \(=0+0+\left(-22\right)\)

                                                                                 \(=-22\)

19 tháng 12 2019

trả lời nhanh giùm mình nha chỉ cần bài 1 thôi cx đc mấy bài kia mik biết làm rồi.Mai là mình thi òi nên mình cần cách làm để ôn thi