Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3S = 1.2.3 + 2.3.3 + 1.4.3 + ... + 99.100.3
= 1.2.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 3.4.2 + .. + 99.100.101 - 99.100.98
=> 99.100.101 => S = 99.100.101/3 = 999900
Vậy: S = 999900
Ta có:3S=1.2.3+2.3.3+...99.100
=1.2.(3-0)+2.3.(4-1)+...+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100
=99.100.101
=>S=99.100.101:3(tự tính)
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.5+...+98.99.100.101.5
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.(6-1)+...+98.99.100.101.(102-97)
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+...+98.99.100.101.102-97.98.99.100.101
\(\Rightarrow\)5S=98.99.100.101.102
\(\Rightarrow\)S=\(\frac{98.99.100.101.102}{5}\)
\(\text{S=1 - 2 + 3 - 4 + 5 - 6 + ...+ 97 - 98 + 99 -100.}\)
\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+......+\left(97-98\right)+\left(99-100\right)\)(50 cặp )
\(S=-1.50\)
\(S=-50\)
Vậy S= -50
Hok tốt !
\(S=1-2+3-4+5-6+...+97-98+99-100\)
\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(97-98\right)+\left(99-100\right)\)
\(S=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)+\left(-1\right)\)
\(S=\left(-1\right)\cdot50\)
\(S=-50\)
S= 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
S x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
S x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
S x 3 = 99x100x101 A = 99x100x101 : 3 A = 333300
\(S=1\times2+2\times3+3\times4+...+99\times100\)
\(3\times S=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+99\times100\times\left(101-98\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+99\times100\times101-98\times99\times100\)
\(=99\times100\times101\)
\(S=\frac{99\times100\times101}{3}\)