K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 2011.2012.3

=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 2011.2012.( 2013 - 2010 )

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + .... + 2011.2012.2013 - 2010.2011.2012

=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 2010.2011.2012 - 2010.2011.2012 ) + 2011.2012.2013

=> 3S = 2011.2012.2013

=> S = ( 2011.2012.2013 ) : 3

15 tháng 2 2016

3S=1.2.3+2.3.(4-1)+...............+2011.2012.(2013-2010)

3S=1.2.3+2.3.4-1.2.3+...............+2011.2012.2013-2010.2011.2012

3S=2011.2012.2013

S=2011.2012.2013:3

S=2714954572

22 tháng 7 2021

`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`

`3S =  1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`

`3S =  1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`

`3S =  99.100.101`

`S = 33.100.101`

`S = 333300`

3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100

=99.100.101

S=33.100.101

=333300

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

2 tháng 2 2016

Đặt S=1.2+2.3+.........+2011.2012

3S=1.2.3+2.3.(4-1)+...........+2011.2012.(2013-2010)

3S=1.2.3+2.3.4-1.2.3+...........+2011.2012.2013-2010.2011.2012

3S=2011.2012.2013

S=2011.2012.2013:3

S=2714954572

2 tháng 2 2016

Đặt A = 1.2 + 2.3 + 3.4 + ... + 2011.2012

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2011.2012.3

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2011.2012.(2013 - 2010)

=> 3A = 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2011.2012.2013 - 2010.2011.2012

=> 3A = 2011.2012.2013

=> A = \(\frac{2011.2012.2013}{3}=2714954572\).

2 tháng 4 2018

Ta có: \(S=1.2+2.3+3.4+...+99.100\)

\(\Rightarrow3S=1.2.3+2.3.3+3.3.4+....+99.100.3\)

\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)....99.100.\left(101-98\right)\)

\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(\Rightarrow3S=99.100.101\)

\(\Rightarrow S=\frac{99.100.101}{3}=\frac{999900}{3}=333300\)

2 tháng 4 2018

S=  1.2 + 2.3 +... + 99.100

=>S= \(\frac{99.100.101}{3}\)=333300

2 tháng 3 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(S=1-\frac{1}{2012}\)

\(S=\frac{2011}{2012}\)

Chúc bạn học tốt nha !!!

2 tháng 3 2016

=1-1/2+1/2-1/3+1/3-1/4+...+1/2011-1/2012

= 1-1/2012

= 2011/2012

Ta có : 1.2 + 2.3 + 3.4 + ... + 2008.2009

= ( 1.2.3 + 2.3.3 + 3.4.3 + ... + 2008.2009.3 ) :3

= [ 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ... + 2008.2009.( 2010 - 2007 )] : 3

= [ 1.2.3 + 2.3.4 - 2.3.1 + 2.4.5 - 3.4.2 + ... + 2008.2009.2010 - 2008.2009.2007 ] : 3

= ( 2008.2009.2010 ) :3

= 2702828240