\(1-2+3-4+5-6+...+99-100\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

S = 1−2+3−4+5−6+...+99−100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)=-50

Vậy S=-50

19 tháng 8 2017

\(S=1-2+3-4+5-6+...+99-100\)

\(S=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(99-100\right)\)

\(S=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

ta có : số lượng cặp số trong phép tính là \(\dfrac{100}{2}=50\)

\(\Rightarrow S=\left(-1\right).50=-50\) vậy \(S=-50\)

 đặt A = (cái trên )

2A=1+2^2+...+2^101

-

A=1+2+....+2^100

------------------------------

A= 2^101 - 1 

B = 5+5^2+......+5^99

5B=5^2+5^3+....+5^100

-

B = 5+5^2+......+5^99

-----------------------------------

4B= 5^100-5

B=(5^100 - 5)/4

học tốt nha

tổng quát cho bạn luôn

A=n+n^2 + ....+ n^n

nA= n^2 + n^3 +....+n^(n+1)

A=n+n^2 + ....+ n^n

------------------------------------------

(n-1)A = n^(n+1) - n

A= (n^(n+1) - n) / (n-1)

ok

tuy nhiên một vài trường hợp(như câu B) thôi nha còn lại cũng na ná như thế

6 tháng 1 2019

S = 101 + (-102) + 103 + (-104) + ... + 2017 + (-2018)

Khi số âm là số nguyên, ta có số số hạng là:

(2018 - 101) : 1 + 1 = 1918 (số hạng)

S = [101 + (-102)] + [103 + (-104)] + ... + [2017 + (-2018)]

S = (- 1) + (-1) + ... + (-1)

Có số số hạng là:

1918 : 2 = 959 (số hạng)

S = (-1) \(\times\) 959

S = - 959

18 tháng 12 2022

P=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

=0+0+...+0

=0

8 tháng 10 2017

ai trả lời trước mà đúng mk sẽ tích cho nha

30 tháng 1 2020

Câu 1 Tính 

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)

Câu 2 Tính 

\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

Câu 3 

a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)

=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120  (2)

Lấy (2) trừ (1) theo vế ta có : 

3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)

=>  2M = 3120 - 1

=>    M = \(\frac{3^{120}-1}{2}\)

b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

        = (1 + 3 + 32) + (3+ 34 + 35) + ... + (3117 + 3118 + 3119)

        = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)

        = 13 + 33.13 + ... + 3117.13

        = 13(1 + 33 + ... + 3117\(⋮\)13

=> M \(⋮\)13

M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)

= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)

= 40 + 34.40 + ... + 3116.40

= 40(1 + 34 + ... + 3116

= 5.8.(1 + 34 + ... + 3116)  \(⋮\)5

4) Tính 

A = 2100 - 299 - 298 - ... - 22 - 2 - 1

=> 2A =  2101 - 2100 - 299 - 298 - 22 - 2 - 1

Lấy 2A trừ A theo vế ta có : 

2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)

=>   A = 2101 - 2100 - 2100 + 1

=>   A = 2101 - (2100 + 2100) + 1

=>   A  = 2101 - 2100 . 2 + 1

=>   A = 1

Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

          = 99.100.101 

=> C = 99.100.101 : 3 =  333300

b) Ta có : D = 22 + 42 + 62 + ... + 982

                    = 22(12 + 22  + 32 + ... + 492

                    =  2.(12 + 22  + 32 + ... + 492)

                    = 22.(1.1 + 2.2 + 3.3 + ... + 49.49)

                    = 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]

                    = 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]

Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50

          = 49.50.51 

=> E = 49.50.51/3 = 41650

Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]

               = 22.[41650 - 49(49 + 1)/2]

               = 22.[41650 - 1225 

               = 22.40425

               = 161700

=> D = 161700

14 tháng 3 2017

là 99/100

14 tháng 3 2017

\(\frac{99}{100}\)

Ủng hộ nhiều nha