Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5.6 + 1/6.7 + 1/7.8 +...+ 1/24.25
=1/5 - 1/6 + 1/6-1/7 +1/7-1/8 + ... + 1/24-1/25
=> Kết quả là: 1/5 - 1/25 = 4/25
b) 2/1.3 + 2/3.5 + 2/5.7 + 2/7.9+...+ 2/99.101
=2/1-2/3 + 2/3-2/5 + 2/5-2/7 + 2/7-2/9 + ... + 2/99-2/101
=> kết quả là 2/1 - 2/101 =200/101
a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
=\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
=\(\frac{1}{5}-\frac{1}{25}\)
=\(\frac{4}{25}\)
b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
=\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)
=\(2.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
=\(2.\left(\frac{1}{1}-\frac{1}{101}\right)\)
=\(2.\frac{100}{101}\)
=\(\frac{200}{101}\)
Sao nhiều quá vại??
mk lm k nổi đâu
Dài quá nhìn lòi bảng họng lun ak
Bài : 4
a/ \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+....+\frac{1}{24\cdot25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b/ \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{99\cdot101}\)
\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
c/ \(\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+\frac{5^2}{11\cdot16}+\frac{5^2}{16\cdot21}+\frac{5^2}{21\cdot26}+\frac{5^2}{26\cdot31}\)
\(=\frac{25}{1\cdot6}+\frac{25}{6\cdot11}+\frac{25}{11\cdot16}+\frac{25}{16\cdot21}+\frac{25}{21\cdot26}+\frac{25}{26\cdot31}\)
\(=\frac{6-1}{1\cdot6}+\frac{11-6}{6\cdot11}+....+\frac{31-26}{26\cdot31}\)
\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{26}-\frac{1}{31}\right)\)
\(=\frac{25}{5}\cdot\left(\frac{1}{1}-\frac{1}{31}\right)\)
\(=\frac{25}{5}\cdot\frac{30}{31}\)
\(=\frac{150}{31}\)
d/ \(\frac{3}{1\cdot3}+\frac{3}{3\cdot5}+\frac{3}{5\cdot7}+....+\frac{3}{49\cdot51}\)
\(=\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+....+\frac{51-49}{49\cdot51}\)
\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}\cdot\left(\frac{1}{1}-\frac{1}{51}\right)\)
\(=\frac{3}{2}\cdot\frac{50}{51}\)
\(=\frac{25}{17}\)
e/ \(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
\(=\frac{1}{1\cdot7}+\frac{1}{7\cdot13}+\frac{1}{13\cdot19}+\frac{1}{19\cdot25}+\frac{1}{25\cdot31}+\frac{1}{31\cdot37}\)
\(=\frac{7-1}{1\cdot7}+\frac{13-7}{7\cdot13}+....+\frac{37-31}{31\cdot37}\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+....+\frac{1}{31}-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\left(1-\frac{1}{37}\right)\)
\(=\frac{1}{6}\cdot\frac{36}{37}\)
\(=\frac{6}{37}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)
\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)
\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)
a,b you cứ tính bt nhé
c)\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{4}-\frac{1}{11}\)
\(=\frac{7}{44}\)
d) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
1) a) A=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{3}-\frac{1}{8}=\frac{5}{24}\)
c) C=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(C=1-\frac{1}{101}\)
\(C=\frac{100}{101}\)
d) Sửa đề: thay \(\frac{3}{92.98}\)=\(\frac{3}{92.95}\)
\(D=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}\)
\(D=\frac{1}{2}-\frac{1}{95}\)
\(D=\frac{95-2}{190}=\frac{93}{190}\)
Các bài trên áp dụng theo tính chất: \(\frac{a}{b\left(b+a\right)}\frac{1}{b}-\frac{1}{b+a}\)
a, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
=2.(\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\))
=\(2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
=\(\frac{2}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{100}{101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)
=\(5.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
=\(5.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)
=\(\frac{250}{101}\)
\(=\frac{5}{2}.\frac{100}{101}\)
a,21.321.3+23.523.5+25.725.7+....+299.101
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)
=>\(\frac{1}{1}-\frac{1}{101}\)
=>\(\frac{100}{101}\)
b,
51.351.3+53.553.5+55.755.7+....+599.101
=>\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}\right)\)
=>\(\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)
=>\(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)
=>\(\frac{5}{2}.\frac{100}{101}\)
=>\(\frac{250}{101}\)
A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\)
A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )
A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )
A= 5. (\(1-\frac{1}{100}\))
A= 5.\(\frac{99}{100}\)
A= \(\frac{99}{20}\)
B = \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)
= \(\frac{1}{2}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)- \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)- \(\frac{1}{10}\)
= \(\frac{1}{2}\) - \(\frac{1}{10}\)
= \(\frac{2}{5}\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
Gọi biểu thức trên là A