Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
\(\frac{1}{4^2}<\frac{1}{3.4}\)
...............
\(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
cộng vế với vế ta được:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(VP=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}<1\)
\(=>VP<1\)
\(\ \)Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\left(dpcm\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\left(đpcm\right)\)
a) \(9< 3^x< 243\)
\(\Leftrightarrow3^2< 3^x< 3^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
b) Sửa đề: \(3^4.3^x\div9=27\)
\(\Leftrightarrow3^{x+4}=3\)
\(\Rightarrow x+4=1\)
\(\Rightarrow x=-3\)
c) \(3^x\div3^2=243\)
\(\Leftrightarrow3^{x-2}=3^5\)
\(\Rightarrow x-2=5\)
\(\Rightarrow x=7\)
d) \(25< 5^x< 3125\)
\(\Leftrightarrow5^2< 5^x< 5^5\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(2^x-64=2^6\)
\(\Leftrightarrow2^x=64+64=128\)
\(\Leftrightarrow2^x=2^7\)
\(\Rightarrow x=7\)
f) \(2^x\div16=128\)
\(\Leftrightarrow2^x=2^7.2^4\)
\(\Leftrightarrow2^x=2^{11}\)
\(\Rightarrow x=11\)
2A=2.(2\(^2\)+2\(^3\)+..............+2\(^{10}\))
A=2\(^3\)+2\(^4\)+........+2\(^{10}\)+2\(^{11}\)
2A-A=(2\(^3\)+2\(^4\)+.........+2\(^{10}\)+2\(^{11}\)) - (2\(^2\)+2\(^3\)+........+2\(^{10}\))
A=2\(^{11}\)-2\(^2\)
Bạn ơi xem lại đề bài dùm mk nhé
ta có \(2A=2^3+2^4+...+2^{11}\Rightarrow2A-A=\left(2^3+2^4+...+2^{11}\right)-\left(2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=2^{11}-2^2=...\) (em tự tính tiếp)
Đặt \(A=1+2+2^2+2^3+...+2^{20}\)
\(2A=2+2^2+2^3+2^4+...+2^{21}\)
\(2A-A=\left(2+2^2+2^3+...+2^{21}\right)-\left(1+2+2^2+...+2^{20}\right)\)
\(A=2^{21}-1\)
Ta đặt
A= 1+2^1+2^2+2^3+....2^20
2A= 21+22+23+....+221
=>2A-A=(2^1+2^2+2^3+...+2^21)-(1+2^2+2^3+...)
1A=2^21-1
Vậy A=2^21-1
\(A=1+2+2^2+2^3+........+2^{2017}\)
\(2A=2+2^2+2^3+2^4+.......+2^{2018}\)
\(2A-A=\left(2+2^2+2^3+2^4+.......+2^{2018}\right)-\left(1+2+2^2+2^3+......+2^{2017}\right)\)
\(2A-A=2+2^2+2^3+2^4+........+2^{2018}-1-2-2^2-2^3-......-2^{2017}\)
\(\Rightarrow A=2^{2018}-1\)
Gọi tổng trên là A
Ta có :
\(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)
\(\Leftrightarrow A=2^{2018}-1\)
Vậy \(A=2^{2018}-1\)